AN AT
CREDIT CONGRESS

MAY 18-21, 2025

Discovering DAX

Presented by: Rebekyah Brewer
Date: May 21, 2025
Session: #37063

Session 4 Files Download:
Discovering DAX

Password: NACM2025

I | LE S https://tinyurl.com/NACMDiscoveringDAX

-

Link Expiration: 6/18/2025

Session 6 _
Platform ~ i?)ﬁl;n;

Publishing Dotentia
Power

Key Learning Outcomes:

Learn the basics of DAX (Data Analysis
Expressions) and why it’s essential for creating
dynamic metrics and measurements in Power BI.
In this session, you'll explore how DAX enables

Ses§|or_1 0 advanced calculations, time intelligence, and Session 2
Designing contextual analysis, key components for building Power
Dynamic custom KPIs and insights for credit managers. Query

Dashboards Understanding DAX will help you create tailored Proficiency
measures that adjust dynamically based on

filters, comparisons over time, and multi-table
relationships, empowering you to deliver
accurate, interactive, and insightful credit
management reports.

Session 4 Segsall;); 3
Discovering

Modeling
DAX ~ Done Right

Discovering DAX

Session Overview

* Introduction & Prerequisites

» Understanding DAX

 Core Features & Functionalities

» Deep Dive into Measures

» Best Practices in DAX

* Wrap-Up, Q&A, Further Resources

i [oo 20 SUMX
; tB3 o

iw ot e faltrs 4.8
P RIESH I Orerdure 1..50 SUMX
e 5MEE WETT G@tore 14,90 Re'aated

SER 1.56. awm Desanve: 1J.80

sen Lo o sowr. 1are Qverdute Invoices

dz8 280 dbon Megetn 1..00

3 SEt pom_on
(C & (4

— ‘-

~,

(

SUMZ

&Rel'
“a

A

Acolner, 1..9¢ P dyment Trends

324 1:86. AN
RS 2900 00 (i

) es

v

n DAX/Data Analysis Ex

aclasso
> D | Expressions @ DAX to Analyze your.custor
power Analy3s ;
Expressi Relate Cutome
II P Calouate Risk Scaes

LN]

Prerequisites - Technical

Software Requirements
» Power Bl Desktop (Free) — Power Query is built into Power Bl for data

transformation.
» Excel (2016 and later, or Microsoft 365) — Power Query is available in the "Get &

Transform™ section.
* Windows OS (Windows 10 or later recommended) — Power Query in Power Bl is
optimized for Windows.
Optional:
» Power Bl Service (Pro or Premium Per User License) — If publishing reports online,
you'll need a Power Bl account

Prerequisites - Technical

Computer Capabilities & Performance Considerations
Power Query processes data transformations, and performance can be impacted by your
system specs.

 RAM - 8GB minimum; 16GB+ recommended for handling large datasets.
» Processor — Intel i5/i7 or AMD Ryzen 5/7 or higher for better performance.
 Internet Speed — If working with cloud data, a stable internet connection is necessary.

Prerequisites - Experience

Before diving into DAX, it’s helpful when a beginner has good grasp of:

Excel Functions & Formulas If you are comfortable with Excel formulas, especially SUMIFS,
COUNTIFS, VLOOKUP, INDEX/MATCH, and ARRAY formulas, learning DAX will be easier.
» Understanding how Excel PivotTables work can also be helpful since DAX operates on columnar
data similar to PivotTables.
Relational Databases & Tables
« Familiarity with concepts like tables, columns, rows, primary keys, and foreign keys
» Knowing how different tables relate to each other (one-to-many, many-to-one, many-to-many).
Basic Understanding of Power Bl
: Know how to import data, create visualizations, and use different report elements.
- While DAX is for calculations, Power Query is for data transformation. A basic
understanding of ETL (Extract, Transform, Load) in Power Query helps.
Understand relationships between tables, star schema vs. snowflake schema,

and cardinality.

Prerequisites - Experience

Logical Thinking & Problem Solving
» Since DAX is a functional language, writing formulas requires structured thinking.
» Debugging DAX errors requires patience and an analytical mindset.

Understanding Data Types & context
« Data Types in Power Bl: Understand different data types like Text, Whole Number, Decimal,
Boolean, and Date/Time.
» Row Context vs. Filter Context: One of the most fundamental DAX concepts.
» Evaluation Context: How filters and row context change based on calculations.

Hands-On Practice in Power Bl
» Practice common DAX functions like
SUM, AVERAGE, COUNT, DISTINCTCOUNT
CALCULATE, FILTER, ALL, ALLEXCEPT
TOTALYTD, SAMEPERIODLASTYEAR, DATESYTD
SUMMARIZE, ADDCOLUMNS, SELECTCOLUMNS

» Practice with sample datasets or in your own daily exports
 Practice. Practice. Practice

Who is DAX For?

User Group

How Power Bl Benefits Them

Power Bl Users

Anyone building Power Bl dashboards and needing custom
calculations, dynamic aggregations, and time intelligence.

Excel Data Analysts aka Data Wizards

Those who want to move beyond SUMIFS and VLOOKUP to more
efficient calculations in Excel.

Financial Analysts, Accountants & Credit
Managers

Useful for creating custom financial metrics, forecasts, and
rolling average reports in Power Bl & Excel or on top of others
Power Bl Reports. Analyzing sales trends, year-over-year
comparisons, and customer segmentation, AR Portfolio,
Payment Trends.

Self-Service Bl User

Business users who need to write custom formulas for KPIs and
dynamic calculations.

Understanding DAX

(Data Analysis Expressions)

DAX = power 2)

==sum? A =sum2
Aa-sun2 X)=3x32

e Definition of DAX

Py A==
* What is DAX? s N V7 |A-xx2 X=x12
e Purpose & Application N, N ™ Poed L =fite2
« Basic Concepts =

DAX
e DAX Language Format

o Calculated Columns
o Syntax & Expression Eval.

DAX - Definition

DAX (Data Analysis Expression) — DAX (Data Analysis
Expressions) is the formula language used in Power BI, Excel
Power Pivot, and Analysis Services.

It is designed for dimensional data modeling.

DAX allows users to create custom calculated columns,
measures, and tables to enhance reports and dashboards.

DAX — Does: Purpose & Application:

It enhances every data model. It
allows users to add their own analysis and calculations on top of a data model
or data source.

— Unlike traditional procedural programming, DAX
works like Excel formulas and is optimized for data storage.

— DAX operates within row context (working on a
single row at a time, like calculated columns) and filter context (evaluating
measures based on filters applied in a report).

DAX — Purpose & Application:

— Functions like SUM(), AVERAGE(), FILTER(), and
CALCULATE() allow powerful data manipulation

— DAX supports functions like TOTALYTD(),
SAMEPERIODLASTYEAR(), and DATESBETWEEN() for time-based
calculations.

— DAX can traverse table relationships, allowing
complex multi-table calculations using functions like RELATED() and
RELATEDTABLE().

DAX — Syntax

Calculating Margin:

= [SalesTotal] — [TotaICost]

© 000

(=) Signs operator indicates beginning of formula, just like Excel.

First referenced column. Column references are always in brackets []
(-) Subtract operator.

Referenced column []

oo

Practice: Calculated Columns

Columnar Calculations — Are used to create new columns in a table
referred to as Calculated Columns

If you have ever added a new column to a ‘Table’ in Excel and enjoyed the
auto calculations all the way down, Calculated Columns are very similar.

Jx~| =[@5alesAmount]*[@[Sales Tax Rate]]
F G H | J K L Wl M Q
der_StartDate H Margin % ﬂ Order_CompletionDate n Saleshmounﬂ Equipment hmountﬂ Labor hmounﬂ Sales Tax Rate u Payme nts_Heceivedn Drﬁer_Balanca Columni
1/31/2021 21.30% 2/14/2021 § 392,880.00 $§ 298,124.29 § 94,755.71 7.45% § 392,680.00 % = | $ 29,260.76
8/18/2021 12.21% 9/1/2021 § 343,421.00 % 133,836.62 § 209,584.38 8.33% $ 34342100 $ = | $ 28,613.97 Ic
10NN 14 2104 NN ¢ 270 402 nn ¢ A m ¢ LB] nono. ¢ 270 102 nn ¢ ¢ 28 TNE N1

Power BI Calculated Column Example:

File Home Help External tools Table tools Column tools o
OB b PR = EBE&EBE AL a
EB Copy @ x| L! @ ﬁ;/ 6 = oot L q i 1\
Get Excel Onelake SQL Enter Dataverse Recent Transform Refresh Manage New Quick | New | MNew Manage View Publish
datav workbook catalogv Server data SOUFCES v datav relationships | measure measure column table roles as
Clighoard Data Queries Relationships Calculstions Security Sensitivity Shars
[ucl 1 Invoice Age = TODAY() - Sales[Invoice Date] e _ &
CustomerlD |~ Customer name ~ | OrderlD |~ | SalesRep ID |~ | Division |*| TermsID |~ | Invoice No |~ | Invoice Date |=l| Due Date |~ | Invoice Amount & |~ | Invoice Balance |~
B 1675627 Goyette, Vandervort and Stark 1002954 2032 ACS-CHI DR INV100295400 3/19/2025 5/19/2025 s172772 3172772 =i
g 5337771 Davis-Kunde 1002936 2496 MOM-PEC DR INV100293600 5/17/2025 5/17/2025 5435345 $430345 s
55 o 1062558 Gutkowski, Veurn and Goldner 1002971 1087 | CCTV-PEQ N9O INV100297100 5/15/2025 8/13/2025 $194065 3194065 o -5
o 1334208 Macejkovic-Breitenberg 1002959 4704 SWD-PEQ NGO INV100295300 5/15/2025 $170409 3170409 =5
6532515 Bednar, Turcofte and Hoeger 1002969 4857 ACS-CHI Moo INV100296300 5/15/2025 8/13/2025 $337258 $337.258 =5
5928647 | Fadel-Schuster 1002935 4857 CYB-CHI Nao INV100293500 5/15/2025 8/13/2025 3480802 3480802 -5
ITDAITT Melan Ine 1AN3058 IREA | ACEGOR nan INL1NATO58NN SHE/INIS 21272075 €472 755 €473 355 -5

= TODAY() - Sales[Invoice Date]

1. Name your column before the “=* symbol

2. ldentify the table with Apostrophe Symbols © . IntelliSense will provide you a list of available tables to
select from.

|dentify and Select the Column you want to aggregate. Columns are identified between | |

Type your operator, *, +, -, etc...

|dentify the table and column to be operated on.

EE

Calculated Column Examples:

DBTAge = TODAY() — Sales|[Due Date]
(REL YRS) Years of Relationship wBusiness = (Today() — Customer[Creation Date])/365

Salesperson Name = (Salesperson[EmployeeName])

Salesperson Name & Location =
RELATED(Salesperson[EmployeeName]) RELATED('Salesperson'[Location])

*Notice the table identifiers * apostrophes are not always required to write a Calculated Column.

Credit Risk Alert = IF(RELATED(Customer[Credit Risk]) = "High Risk", "Alert™, " ")

Best Practice: Calculated Columns

When to Use a Calculated Column When NOT to Use a Calculated Column

« Row-Level Calculations (e.g., >{ Aggregations — Use Measures
Concatenating names, Classification) instead

« Sorting or Filtering needs, >C Simple Transformations — Use
Slicer Power Query

« Required for Relationships > Large Data Models — Reduces
between tables performance efficiency

« Data Model Constraint - >{ Anything that can be calculated

Conditional Flags for later aggregation dynamically with measures

DAX — Syntax
Measures take up no space except in the field pane where

they are stored and dragged to visuals as needed A

How to create a Measure using a function:

{ \
Sum of Invoice Amount = SUM(Sales|[Invoice Amount])

Name of Measure before (=)

(=) Signs operator indicates beginning of formula, just like Excel.

Function, SUM, AVERAGE, MIN, MAX, SUM adds up all of referenced columns

() Parenthesis surround the argument just like they would in Excel.

Reference Column in brackets

Table name in which the column resides. If spaces are in column name, you must enclose with single quotation marks.
‘* asin ‘Fact Sales’[SalesAmount]

ok wh kR

Calculated Columns vs Measures

Feature

Calculation Type

Calculated Column

Computed row by row during data
model refresh

Measure

Computed on the fly based on user interaction.

Storage

Stored in the model, consuming
memory

Not stored, recalculated dynamically when
needed

Evaluation Context

Works at the row level (row context) Works at the aggregation level (filter context)

Performance Impact

More efficient, as it's calculated only when

Increases memory usage and file size needed

Used when you need a new column Used for aggregations (SUM, AVERAGE, COUNT,

Use Case field in your data table etc.) in reports

Sales[Profit] = Sales[Revenue] -

Sales[Cost] (adds a new columnto Total Sales = SUM(Sales[Revenue]) (computed
Example the table) dynamically)

Basic Concepts:

Measures perform calculations
on data at the time of query,
responding to user interactions
such as filtering and slicing.

They are dynamic formulas
that aggregate data more
efficiently then calculated
columns.

The value changes based on
the interaction of the reports
and context of the filters.

Calculated at Query Time — Unlike calculated columns,
which are computed when the data is loaded or
refreshed, measures are evaluated dynamically when
used in a report.

Aggregated Results — Measures perform calculations
across multiple rows rather than row by row.

Context-Aware — Measures change based on the filter
and row context applied in a report (e.g., filtering by
region, date, or product category).

Stored in the Model — Unlike Excel formulas, measures
do not exist as part of the dataset but as metadata
inside the data model.

File Home Insert Modeling View Optimize Help External tools

v B sales
&= ﬁ st 7 p p (] Customerinde
=] ann 1 ? Qﬁ R I\
Manage New Quick New New Mark as date New Manage View () Employeelnde...
relationships measure measure column table table parameter v roles as o
Relationships Calculations Calendars Page refresh Parameters Security !—l Z EqUipment fh

I]
Created measures are shown in [J 2 Labor Amount

the Fields list beneath their) Margin %
assigned table with a little —auto generated, [] Order Comple...
calculator icon beside them based on fields you drag and drop. [] ¥ Order Outstan..
instead of the sum icon. — are user-defined [J Order Start D...
calculations created by DAX. () Orderindex SK
You can name them whatever — Pre-built 0] = Pavirieiis Ree..
you like. calculations in Power Bl for common 5 Region 5K
aggregations. A.
They are Report Level — custom J0rey - L) 2 Seles Amount
_ _ — Context Specific Gl e
metrics created in a report on culat lied directly withi —
calculations applied directly within a T

top of the dataset, added by

users or by data modelers. visual, not stored in acolumn or a 2 O @ sales Total G

field.

Implicit & Explicit Measures

Feature el Implicit Measures Invoice Amt Explicit Measures

Automatically created when dragging a

Definition: o : User-defined calculations written using DAX
numeric field into a visual

Created By: Power Bl (Auto-generated) Report Developer (Manually using DAX)

DAX Requirement: No DAX needed Requires DAX formula

Customization: Limited (only basic aggregations) Fully customizable with complex logic

Reusability: Cannot be reused in other measures Can be Teused in multiple measures and

calculations

Performance: General_ly optimized for quick visual Can be optimized using best DAX practices
calculations

Complexity: Suitable for simple aggregations (SUM, Suitable for complex calculations (Year-over-

plexity: AVERAGE, COUNT) Year, Ratios, etc.)
Best Use Case: Quick, ad-hoc analysis Enterprise-level reporting, consistency, and

scalability

Best Practice:
Take Time to

Organize

Get In a habit while you connecting
your relationships in your data
model, setting the data types in
your Power BI, setting your date
table and sorting, to also create
explicit measures for all your
iImplicit measures and then hide
your implicit measures along with
your unnecessary sort keys ID’s .

> 4

/

I

common
DAX
Functions

Aggregation: SUM(), AVERAGE(), MIN(), MAX()
Logical: IF(), SWITCH(), AND(), OR()

Filter and Context Modification: CALCULATE(), FILTER(), ALL(),
REMOVEFILTERS()

Date & Time Intelligence: DATEADD(), TOTALYTD(), EOMONTH()
Text Functions: CONCATENATE(), SEARCH(), LEFT(), RIGHT()

Table Manipulation: SUMMARIZE(), ADDCOLUMNS(), UNION(),
CROSSJOIN(), Relationship Navigation USERELATIONSHIP()

DAX Fundamental Aggregation Measures

Function

SUM

AVERAGE

MIN

MAX

COUNT

COUNTA

COUNTROWS

DISTINCTCOUNT

SUMX

AVERAGEX

MINX

MAXX

Description Syntax

Returns the sum of a column. SUM(<column>)

Returns the average (arithmetic mean) of a
column. AVERAGE(<column>)
Returns the smallest value in a column. MIN(<column>)

Returns the largest value in a column. MAX(<column>)

Counts the number of numeric values in a

column. COUNT(<column>)

Counts the number of non-empty values in a

column. COUNTA(<column>)
Counts the number of rows in a table. COUNTROWS(<table>)
Counts the number of distinct values in a

column. DISTINCTCOUNT(<column>)

Returns the sum of an expression evaluated

for each row in a table. SUMX(<table>, <expression>)

Returns the average of an expression

evaluated for each row in a table. AVERAGEX(<table>, <expression>)

Returns the smallest value of an expression

evaluated for each row in a table. MINX(<table>, <expression>)

Returns the largest value of an expression

evaluated for each row in a table. MAXX(<table>, <expression>)

Example

Invoice Amt = SUM('Sales'[Invoice Amount])

Average Sale LTD = AVERAGE('Sales'[Invoice Amount])
Smallest Sale LTD = MIN('Sales'[Invoice Amount])

Highest Sale LTD = MAX('Sales'[Invoice Amount])

Open AR Transactions = COUNTROWS(Sales)

Collection Notes = COUNTA(Collections[Collection Note])

Open AR Transactions = CALCULATE(COUNTROWS(Sales), ALL(Sales))

Customers = DISTINCTCOUNT('*Customer'[CustomerID])
Invoices = DISTINCTCOUNT('Sales'[Invoice No])

Work Order Balance = SUMX("Work Orders', [WO Sale Amount] - [WO Cash TTD])

AVERAGEX(Sales, Sales[Quantity] * Sales[Sales Amount])

First Sales Date = MINX("Work Orders', "Work Orders'[SalesDate])

Last Sales Date = MAXX("Work Orders', "Work Orders'[SalesDate])

Context. Context. Context.

Understanding context is essential in DAX. There are two primary types: row context and filter context.

Row Context -
Row context refers to the current row being processed.

Example: A calculated column for Margin with the formula [SalesAmount] - [TotalCost].

This formula computes a value for each row by subtracting the TotalCost from the SalesAmount in the same
row. DAX understands which values to use because it applies the calculation within the context of each row.

In a specific row where SalesAmount is $101.08 and TotalCost is $51.54, the Margin value is calculated as
$49.54 by subtracting TotalCost from SalesAmount.

Context. Context. Context.

Filter Context —
Filter context is crucial in DAX because it determines which data is used in calculations.
Pivot Tables are all about filter context.

 Visuals apply a filter context automatically.
o Slicers provide a filter context.
 Explicit filter functions in DAX like CALCULATE, ALL, RELATED, FILTER allow you to

Include additional filters to your measures and even override existing filter context
as needed

FILTER CONTEXT:

{

CCTV Sales Total = CALCULATE([WO Sales Amount], Regions[TradeAbbrv]=“CCTV”)

1. Measure Name

2. = Beginning formula

3. CALCULATE Function evaluates an expression, as an
argument, in a context that is modified by special filters.

4. Parenthesis () surround argument(s).

5. A measure [Sales] in the same table as expression. The
sales measure has the same formula:
=SUM(FactSales[SamesAmount])

6. A comma (,) separates each filter.

7. Referenced column with = “CCTV” as filter

Ensures that only sales values, defined by the filter are

\

calculated only for rows in the DimRegion with value “CCTV™.

DAX Filters for Measures — Context Override

Function

FILTER

ALL

ALLEXCEPT

ALLSELECTED

REMOVEFILTERS

KEEPFILTERS

CALCULATE

CALCULATETABLE

VALUES

DISTINCT

Description

Returns a filtered table based on a condition.

Removes all filters from a table or column.

Removes all filters except on specified columns.

Removes filters applied by visual interactions but
retains others.

Removes all filters from the specified columns or
tables.

Applies existing filters before executing a
calculation.

Evaluates an expression in a modified filter
context.

Returns a table with a modified filter context.
Returns a single-column table of unique values.

Returns a table of distinct values from a column.

Syntax

FILTER(<table>, <condition>)
FILTER(Sales, SalesfAmount] > 1000)

ALL(<table_or_column>)

ALLEXCEPT(<table>, <column1>, <column2>, ...)
ALLEXCEPT(Sales, Sales[Region])

ALLSELECTED(<table_or_column>)

REMOVEFILTERS(<table_or_column>)

KEEPFILTERS(<expression>)

CALCULATE(<expression>, <filterl>, <filter2>, ...)

CALCULATETABLE(<table>, <filterl>, <filter2>,
)

VALUES(<column>)

DISTINCT(<column>)

Example

High Risk Balances = CALCULATE([Invoice Balance],
FILTER('Customer', Customer[Credit Risk] = "High Risk"))

Total AR Balance = CALCULATE([Invoice Balance], ALL('Sales"))

Total AR Balance Division AllExcept = CALCULATE([Invoice
Balance], ALLEXCEPT('Sales',Sales[Division])

ALLSELECTED(Sales[Category])

REMOVEFILTERS(Sales[Product])

KEEPFILTERS(FILTER(Sales, Sales[Amount] > 1000))

CALCULATE(SUM(Sales[Amount]), Sales[Region] = "West")

CALCULATETABLE(Sales, Sales[Category] = "Electronics")
VALUES(Sales[Product])

DISTINCT(Sales[CustomerID])

Location Name Expression

AR_Measures Inv Balance SUM('AR Trial Balance'[Invoice_Balance])

AR_Measures Inv Amount SUM('AR Trial Balance'[Inveice_Amount])

AR_Measures % 90+ DBET IFERROR(DIVIDE([91+ DBT],[Inv Balance]),0)

AR_Measures % AR DIVIDE([Inv Balance],[Total AR Balance])

AR_Measures % 61-90 DBT DIVIDE([61-90 DBT],[Inv Balance])

AR_Measures % 31-60 DBT DIVIDE([31-60 DBT],[Inv Balance])

AR_Measures % 01-30 DBT DIVIDE([01-30 DBT*],[Inv Balance])

AR_Measures % 00 DBT DIVIDE([00 Current*],[Inv Balance])

AR_Measures Document Count DISTINCTCOUNT (‘AR Trial Balance'[InvoiceNo])

AR_Measures Customer Count®™ DISTINCTCOUNT (AR Trial Balance[CustomerlD]) //DISTINCTCOUNT scans the specified column and counts each unique
value only once, ignoring duplicates and null values.

AR_Measures 31-60 DBT CALCULATE([Inv Balance], FILTER(AR Trial Balance’,’AR Trial Balance'[DBTAge] >30 && 'AR Trial Balance [DBTAge]<=60))

AR_Measures 91+ DBT CALCULATE([Inv Balance], FILTER('AR Trial Balance',’AR Trial Balance'[DETAge] »=91))

AR _Measures 61-90 DBT CALCULATE([Inv Balance], FILTER(AR Trial Balance',’AR Trial Balance'[DBTAge] >=61 && ‘AR Trial Balance' [DBTAge]<=90))

AR_Measures 01-30 DET* CALCULATE([Inv Balance], FILTER('AR Trial Balance',’AR Trial Balance'[DETAge] ==01 && ‘AR Trial Balance [DBTAge]<=30))
/IThe CALCULATE function is used to modify the filter context of a calculation

AR_Measures 00 Current® CALCULATE([Inv Balance], FILTER('AR Trial Balance',’AR Trial Balance'[DETAge] <=0)) //Use Double Backslash to create

AR_Measures
AR_Measures

. AR__Measures Past Due ALL*

Total AR Balance

120+ DBT"

Credit Remaining

notes on your measures.
CALCULATE([Inv Balance], ALL('AR Trial Balance'))

CALCULATE(//Use Shift+Enter to add new rows to format your DAX Code for easier reading. Bookmark:
daxformatter.com as an online tool

[Inv Balance],

FILTER(

‘AR Trial Balance',

‘AR Trial Balance'[DBTAge] >=120

)

)

[01-30 DBT*}+[31-60 DBT]+[61-90 DBT]+[91+ DBT] //Measure Branching
[Credit Limit Amt — [Invoice Balance]

DAX Logical Conditional Measures

Function

IF

SWITCH

AND

OR
NOT

IFERROR

ISBLANK

ISERROR
TRUE
FALSE

Description

Returns one value if a condition is TRUE and another if FALSE.
Evaluates an expression against multiple conditions and
returns a corresponding value.

Returns TRUE if all conditions are TRUE.

Returns TRUE if at least one condition is TRUE.

Returns the opposite of a Boolean expression.

Returns a specified value if the expression results in an error.

Checks if a value is blank (empty).

Checks if an expression results in an error.
Returns the Boolean value TRUE.

Returns the Boolean value FALSE.

Syntax Example
IF(<condition>, <true_value>, Over Credit Limit Check = IF([Credit
<false_value>) Remaining] <0, "Review", ")

IF(SalesfAmount] > 1000, "High", "Low")
SWITCH(<expression>, <valuel>, <resultl>, SWITCH(Sales[Category], "A", "Type 1", "B",

..., <else_result>) "Type 2", "Other")

AND(Sales[Amount] > 1000, Sales[Discount]
AND(<condition1>, <condition2>) <10)

OR(Sales[Region] = "West", Sales[Region] =
OR(<condition1>, <condition2>) "East")
NOT(<condition>) NOT(Sales[Approved])

IFERROR(Sales[Amount] / Sales[Quantity],
IFERROR(<expression>, <alternate_value>) 0)

Collection Note Check = ISBLANK('AR
ISBLANK(<value>) Measures'[# Collection Notes])
ISBLANK(Sales[CustomerID])

ISERROR(<expression>) ISERROR(Sales[Amount] / Sales[Quantity])
TRUE() TRUE()
FALSE() FALSE()

AR Balance:

- AR Portfolio Summary

Salesperson Name s
; ; ° ;
SafeNetrix SafeZone Installations
Region v Credit Risk Open Balance
| | 2. = . = . = . B |J| . 1l '
L] Midwest Region AR Aging Bands Inv Balance % AR Doc# Customers# Payment Terms Open Balance cendit_ sk @hheh Sek @t ach Mad Rk @ tove Rk
[] Northeast Region 00 DBT 156;846,733.00 13.75% 14 14 payme.. ®N30 ©N60 ®N3O g HignRisk
01-30DBT | §17,222,238.39 34.60% 38 % N0 _ el
30-60 DET I S1915,751.87 23.94% 3 29 S7.04M (14.14%) S;ggfrarﬁ ﬁ“*;
City ~ 60-90 DBT [55,925,984.00 13.91% 23 23 o s
[ilEhieams 90+ DBT {56,869,991.50 13.80% 25 24 59 ()
Total $49,780,698.76 100.00% 131 106
[] Peoria
Low Risk

[- 4
L | Scranton Period Balance FEMMLEK) Fiagh Mo Risk

D Spnngﬂeld N30 $32._ (66.) $8.65M (17.38%)

Trade Description -~ Top 10 Open Balances Top 10 Past Due Balances 180+ Bad Debt WO Risk

[] Access Control Systems .Compan\,r_Name I?rw Balance Company_Name :ast Due ALL* #Docs Company_Mame ;Z{H DET* #Docs DBTAge

. . .. Rau, Armstrong and Grant 54,561,277.82 Nicolas LLC $1,027,390.42 1 Wehner, 5anford and S4B88,791.00 1 127

|_]] . ‘ e v 1

[] Closed-Circuit Television g ree s §§,428,927.00 Hand, Bruen and Fay 51,098,416.00 2 Durgan

[] Cybersecurity Trantow-Kris §1,423,762.00 Wiza-Greenfelder 51,105,519.00 2 Molan-McClure 5477,848.00 1 187
Nolan-McClure §1,407,229.00 Jerde-Flatley 51,198,260.00 3 Trantow-Kris 5428,037.00 1 146

(] HWD Development Nienow, Kuhlman and Haley 51,316,730.21 Mertz LLC $1,245,308.00 2 Willms Group 5407,142.00 1 158

["] Monitoring Services Mertz LLC 51,245,308.00 Nienow, Kuhlman and Haley 51,316,730.21 1 Hagenes-Kerluke 5361,705.00 1 124

et Jerde-Flatley 51,198,260.00 Nolan-McClure 51,407,229.00 2 McCullough-Reynolds 5342,737.00 1 160

|1 Software Development : y Mert= LLC $332.564.00 1 136
Willms Group 51,130,830.00 Trantow-Kris 51,423,762.00 2 rtz ,204.

D Systems Integation Wiza-Greenfelder 51,105,519.00 Daugherty Inc 51,428,927.00 3 Hansen-McGlynn 5327,898.00 1 134
Hand, Bruen and Fay 51,098,416.00 Rau, Armstrong and Grant 54,561,277.82 2 Jerde-Flatley 5291,898.00 1 190
Total 515,916,259.03 Total $15,812,819.45 20 Total §3,686,290.00 10

Always created calculated column either in Power Query Custom
Column or in Power BI Calculated Column for anything that will be
sliced or filtered. Instead of using a measure.

Custom Column
Add a column that is computed from the other columns.
MNew column name
AR Aging Bands - DETAge
Custom calumn formula (@ Available columns
= if [DBTAge] <=8 then "0@ DBT" else if [DBTAge]>=1 and 1)
[DBTAge]<= 3@ then "@1-38 DET" else if [DBTAge] >= 31 and CustomeriD
[DBTAge] <=68 then "3@-68 DET" else if [DBTAge] »>=61 and CustomerName
[DBTAge] <=98@ then "68-98 DET" else "9@+ DBET"
CrderlD
SalesReplD
Division
TermsiD v
<< Insert
Learn about Power Query formulas
v/ No syntax errors have been detected. “ Cancel

Power Query M Code: AR Aging Bands - DBTAge

if [DBTAge] <=0 then "00 DBT" else if [DBTAge]>=1 and
[DBTAge]<= 30 then "01-30 DBT" else if [DBTAge] >= 31 and
[DBTAge] <=60 then "30-60 DBT" else if [DBTAge] >=61 and
[DBTAge] <=90 then "60-90 DBT" else "90+ DBT"

(IF Method) AR Aging Bands - DBTAge

AR Aging Bands - DBTAge =
IF(
[DBTAge] <=0, "00 DBT",
IF(
[DBTAge] >=1 && [DBTAge] <= 30, "01-30 DBT",
IF(
[DBTAge] >= 31 && [DBTAge] <= 60, "30-60 DBT",
IF(
[DBTAge] >= 61 && [DBTAge] <= 90, "60-90 DBT",
"90+ DBT"
)
)
)
)

(Switch Method) AR Aging Bands - DBTAge

AR Aging Bands - DBTAge =
SWITCH(

TRUEQ,
[DBTAge] <= 0, 00 DBT",
[DBTAge] >= 1 && [DBTAge] <= 30, "01-30 DBT",
[DBTAge] >= 31 && [DBTAge] <= 60, "30-60 DBT",
[DBTAge] >= 61 && [DBTAge] <= 90, "60-90 DBT",
""90+ DBT"

AR Aging Bands Measures Methods for DAX

DAX Method - IF AR Aging Bands

AR A?Eng Bands Measure (IF Method) =
MéX(SaIes[DBTAge]) <= 0, "00 DBT",
MéX(SaIes[DBTAge]) >= 1 && MAX(Sales[DBTAge]) <= 30, "01-30 DBT",
MéX(SaIes[DBTAge]) >= 31 && MAX(Sales[DBTAge]) <= 60, "'30-60 DBT",
Méé£88%$§[DBTAge]) >= 61 && MAX(Sales[DBTAge]) <= 90, "60-90 DBT",

DAX Method - Switch AR Aging Bands

AR Aging Bands Measure Switch method =

SWITCHG
TR g,
MAX(*Sales™ [DBTAge]l) <= 0, 00 D
MAXC-Sales® [DBTAge]) >= 1 && MAX Sales [DBTAge] <= 30, "01-30 DBT",
MAX(:Sales® [DBTAge = 31 && MA "Sales "[DBT <= 60, "30-60 DBT"
MAX Sales DBTAQge = 61 && MAX("Sales*® DBTAge <= 90, "60-90 DBT

"90+ DBT

DAX Time Intelligence Measures

Function
TOTALYTD
TOTALQTD
TOTALMTD
PREVIOUSYEAR
PREVIOUSQUARTER
PREVIOUSMONTH
PREVIOUSDAY
SAMEPERIODLASTYEAR

DATEADD

DATEDIFF
PARALLELPERIOD
FIRSTDATE

LASTDATE

Description Syntax

TOTALYTD(<expression>, <dates_column>[,
Calculates year-to-date total for a measure. <filter>])
Calculates quarter-to-date total for a

measure. <filter>])

Calculates month-to-date total for a TOTALMTD(<expression>, <dates_column>[,
measure. <filter>])

Returns the measure value for the previous

year. PREVIOUSYEAR(<dates_column>)
Returns the measure value for the previous

quarter. PREVIOUSQUARTER(<dates_column>)
Returns the measure value for the previous

month. PREVIOUSMONTH(<dates_column>)
Returns the measure value for the previous

day. PREVIOUSDAY(<dates_column>)

Returns the measure value for the same

period in the previous year. SAMEPERIODLASTYEAR(<dates_column>)
Shifts dates forward or backward by a given DATEADD(<dates_column>,

number of intervals. <number_of intervals>, <interval_type>)

Calculates the difference between two

dates based on a specified time interval

(e.g., day, month, year DATEDIFF(Start_Date, End_Date, Interval)
Returns a parallel period, shifting by a given PARALLELPERIOD(<dates_column>,
number of intervals. <number_of intervals>, <interval_type>)
Returns the first date in the column or
table. FIRSTDATE(<dates_column>)

Returns the last date in the column or table.LASTDATE(<dates_column>)

TOTALQTD(<expression>, <dates_column>[,

Example

TOTALYTD(SUM(Sales[Amount]), Date[Date]) Sales YTD =
TOTALYTD([WO Sale Amount], 'Dates'[Date])

TOTALQTD(SUM(Salesf]Amount]), ‘Date’[Date])
TOTALMTD(SUM(Sales[Amount]), ‘Date’[[Date])
PREVIOUSYEAR(‘Date’[[Date])
PREVIOUSQUARTER(‘Date’[Date])
PREVIOUSMONTH(‘Date’[[Date])
PREVIOUSDAY(‘Date’[Date])
SAMEPERIODLASTYEAR('Date’[[Date])
DATEADD(‘Date’[Date], -1, YEAR)
Age Doc = MAXX(

"Sales’,

DATEDIFF(*Sales'[Invoice Date],TODAY(),DAY))
PARALLELPERIOD(‘Date’[Date], -1, YEAR)

FIRSTDATE(‘Sales’[Date])

LASTDATE(‘Sales’[Date])

A Rolling Average (or moving average) calculates the average of a
specific measure over a defined time window. It is commonly used to
smooth data and identify trends

Explanation:

» DATESINPERIOD() — Defines the rolling window of dates based on the current date context.

LASTDATE() — Specifies the end date of the rolling window.

-3, MONTH - Looks back three months from the last date in the current filter context.

AVERAGEX() - Iterates over each date in the defined period and calculates the average of the specified measure ([Total Sales]).

Rolling 3-Month Average Sales = Rolling 7-Day Average Sales =
CALCULATE(CALCULATE(
AVERAGEX(AVERAGEX(
DATESINPERIOD(DATESINPERIOD(
‘Calendar'[Date], ‘Date'[Date],
LASTDATE('Date'[Date]), LASTDATE('Date'[Date]),
-3’ -71
MONTH DAY
)1)1
[Total Sales] [Total Sales]
))

Explanation:

It calculates the sum of values from the start of a period
up to the current point in time, adding the previous day’s
value to the current day’s value consecutively.

*CALCULATE(): Modifies the filter context to include all dates up to the current date.
*ALL('Date'): Removes existing filters to ensure we are calculating across the entire date range.
*FILTER(): Applies the condition to include all dates up to the current date (MAX('Date'[Date]))

Cumulative Sales =
CALCULATE(
SUM(Sales[Invoice Amount]),
FILTER(
ALL('Date"),
‘Date'[Date] <= MAX(‘Date'[Date])
)
)

Daily Cumulative Sales =
CALCULATE(
SUM(Sales[SalesAmount]),
FILTER(
ALL(‘Date"),
‘Date'[Date] <= MAX(‘Date'[Date])
)
)

Monthly Cumulative Sales =
CALCULATE(

SUM(Sales[Sales Amount]),

FILTER(
ALL(‘Date"),
'‘Date'[Date] <= MAX(‘Date'[Date]) &&
MONTH('Date’'[Date]) = MONTH(MAX('Date’'[Date])) &&
YEAR(‘Date’'[Date]) = YEAR(MAX(‘Date'[Date]))

)
)

DAX Fundamental Table Functions

Function

ADDCOLUMNS

SUMMARIZE

SUMMARIZECOLUMNS

SELECTCOLUMNS
FILTER
ALL

DISTINCT

VALUES
CROSSIOIN

UNION
INTERSECT

EXCEPT

Description

Adds calculated columns to a table.

Returns a summary table with aggregated
values.

Returns a summary table with filters applied.

Returns a table with selected columns.

Returns a filtered table based on a condition.

Removes all filters from a table or column.
Returns a table of distinct values from a
column.

Returns a single-column table of unique
values.

Returns a Cartesian product of two tables.
Returns the union of two tables, removing
duplicates.

Returns the intersection of two tables.
Returns the difference between two tables
(values in first but not in second).

Syntax

ADDCOLUMNS(<table>, <column_name>, <expression>[,

<column_name>, <expression>, ...])

SUMMARIZE(<table>, <group_by_column>[,

<group_by_column>, ...][, <name>, <expression>, ...])

SUMMARIZECOLUMNS(<group_by_column>[,

<group_by_column>, ...][, <name>, <expression>, ...])

SELECTCOLUMNS(<table>, <name>, <column>[, <name>,

<column>, ...])
FILTER(<table>, <condition>)

ALL(<table_or_column>)
DISTINCT(<column>)

VALUES(<column>)
CROSSJOIN(<table1>, <table2>)

UNION(<tablel>, <table2>[, <table3>, ...])
INTERSECT(<tablel>, <table2>)

EXCEPT(<table1l>, <table2>)

Example
ADDCOLUMNS('Work Orders', "Profit", "Work
Orders'[SalesAmount]- "Work Orders'[Equipment
Amount])

Summarize Table Division Sales by Period =
SUMMARIZE('Work Orders', '‘Dates'[YYYY-
MMM], "Work Orders'[Division_NK], "Total
Sales", SUM("Work Orders'[SalesAmount]))
SUMMARIZECOLUMNS(Date[Year],
Region[RegionName], "Total Sales",
SUM(Sales[Amount]))

Region by Year Total Sales =
SUMMARIZECOLUMNS('Dates'[Fiscal Year],
Regions[Region], "Total Sales", [WO Sale
Amount])

FILTER(Sales, Sales[Amount] > 1000)

ALL(Customer)
DISTINCT(Salesperson[SalespersoniD])

VALUES(Region[RegionName])
CROSSJOIN(Salesperson, Region)

UNION(OrderDetails_2023, OrderDetails_2024)
INTERSECT(Customer_US, Customer_Canada)

EXCEPT(Sales, Sales_Excluded)

Benefits of
Learning DAX in
Excel:

1. Excel is familiar territory for all of us

2. Increased opportunities for internal
use leads to wider application

3. Increased usage cases leads to
increased experience

4. Small quick wins will encourage
motivation to learn more.

5. Logical transition to Power PI
through PowerPivot

{ame: Sales

ure Mame: Sales Amount Total

Je Description: | Sum of Sales

irmula: _fx: Check DAX Formula

=sUMEales[SalesAmount])

| SUM({ColumnName)

Catego

ianerz
| Date

‘Numb
. rrer:]

TAUEY

=22 [CustomerlD_NK]

=== [CustomerMame]
@Custnmers[t:itn.r]
ECustnmers[Cnmpany_Name]
E Customers[Creation_Date]
B customers[Credit_limit]

E Customers[Credit_risk]
ECustnmers[CustnmerlD_Nlﬂ
@Custnmers[Custnmerlnde:{_Sﬁ]
Efustnmers[Email]
ECustnmers[SalesPersnnID_F}q
@Custnmers[ﬂtate]

Date Table — DAX Method

DateTable =
ADDCOLUMNS (
CALENDAR (DATE(2015,1,1), DATE(2030,12,31)),
"Year", YEAR([Date]),
"Month", FORMAT([Date], "MMMM"),
"Month Number", MONTH([Date]),
"Quarter”, "Q" & FORMAT([Date], "Q"),
"Day of Week", FORMAT([Date], "dddd"),
"Day of Year", FORMAT([Date], "DDD"),
"Week Number", WEEKNUM([Date])

Total AR

00 DBT AR

01-30 DBT AR

31-60 DBT AR

61-90 DBT AR
90+ DBT AR

Past Due AR
60+ DBT AR

% Past Due AR
% 90+ DBT AR
% 60+ DBT AR
% 00 DBT

% 01-30 DBT
% 31-60 DBT
% 61-90 DBT
% AR

Total outstanding Accounts Receivable (A/R) balance.

Current AR. Balance of invoices that are not overdue.

Total A/R balance for invoices due within 0-30 days.

Total A/R balance for invoices due within 31-60 days.

Total A/R balance for invoices due within 61-90 days.

Total A/R balance for invoices due over 90 days.

Total amount of past-due invoices.

Total A/R balance for invoices due over 60 days.
Percentage of total A/R that is overdue.
Percentage AR over 90 Days Beyond Terms
Percentage AR over 60 Days Beyond Terms
Percentage AR that is Current

Percentage AR 01-30 DBT

Percentage AR 31-60 DBT

Percentage AR 61-90 DBT

Percentage Open Balane to Total AR

Total AR Balance = CALCULATE([Open Balance], ALL(*Sales'))
00 DBT = CALCULATE([Open Balance], FILTER('Sales’, 'Sales'[DBTAge] <=0

)
01-30 DBT = CALCULATE([Open Balance], FILTER('Sales’,'Sales'[DBTAge]

>=1 && 'Sales'[DBTAge] <= 30))

31-60 DBT = CALCULATE([Open Balance], FILTER('Sales’,'Sales'[DBTAge]
>= 31 && 'Sales'[DBTAge] <= 60))

61-90 DBT (DateDiff) = CALCULATE([Open Balance], DATEDIFF(Sales[Due
Date], TODAY(), DAY)>=61, DATEDIFF('Sales'[Due Date],TODAY(),DAY)<=90)
90+ DBT = CALCULATE([Open Balance], FILTER('Sales’, 'Sales'[DBTAge] >=
91))

Past Due AR = CALCULATE([Open Balance], Sales[Due Date] < TODAY())
60+ DBT = [61-90 DBT] + [90+ DBT]

% Past Due AR= DIVIDE([Past Due AR], [Total AR Balance], 0)

% 90+ DBT = DIVIDE([90+ DBT],[Total AR Balance])

% 60+ DBT = DIVIDE([60+ DBT],[Total AR Balance])

% 00 DBT = DIVIDE([00 DBT],[Total AR Balance])

% 01-30 DBT = DIVIDE([01-30 DBT],[Total AR Balance])

% 31-60 DBT = DIVIDE([31-60 DBT],[Total AR Balance])

% 61-90 DBT = DIVIDE([61-90 DBT],[Total AR Balance])

% AR = DIVIDE([Open Balance], [Total AR Balance])

Invoices
Customers

High Risk Balances

% High Risk Balance

AR Aging Category

Amount Over Credit
Limit
Message Over Credit
Limit

Credit Utilization
AR Concentration %

Distinct Count # of Invoice Documents on AR to track # Invoices = DISTINCTCOUNT('Sales'[Invoice No])
Transaction activity and volume

Distinct Count of # Customers on AR with Balances # Customers = DISTINCTCOUNT('Sales'[CustomerID])

Average Days Outstanding = AVERAGEX('Sales','Sales'[DBTAge])
Calculates amount of outstanding AR that is categorized to High Risk Balances = CALCULATE([Open Balance], FILTER(‘Customer’,
High-Risk customers. Customer[Credit Risk] = "High Risk"))
Calculates percentage of outstanding AR that is categorized
to High-Risk customers. % High Risk Balance = DIVIDE([High Risk Balances],[Total AR Balance])
AR Aging Bands Measure=
SWITCH(
TRUE(),
MAX('Sales'[DBTAge]
MAX('Sales'[DBTAge]
MAX('Sales'[DBTAge]
Categorization of AR into aging buckets (e.g., 00-30, 31-60, MAX('Sales'[DBTAge]
61-90, 90+ days). "90+ DBT")
Amount Over Credit Limit = SUMX(FILTER('Sales', 'Sales'[Invoice Balance]>
RELATED(Customer[Credit Limit])), 'Sales'[Invoice Balance] -
Calculates amount of open AR balance is over credit limit RELATED(Customer[Credit Limit]))
Displays a text value “Review” if balance is over credit
limit. Msg Over Credit Limit Check = IF([Credit Remaining] <0, "Review", ")

<=0, "00 DBT",

>= 1 && MAX('Sales'[DBTAge]) <= 30, "01-30 DBT",
>= 31 && MAX('Sales'[DBTAge]) <= 60, "30-60 DBT",
>= 61 && MAX('Sales'[DBTAge]) <= 90, "60-90 DBT",

— — — —

Credit utilization ratio - how much of total credit limit is
used. Credit Utilization = DIVIDE([Open Balance],[Credit Limit Amt],0)
Percentage of AR Concentrated. AR Concentration % = DIVIDE([Open Balance], [Total AR Balance])

Top 10 Best Practices for DAX

Best Practice:

1. Use Measures Instead of Calculated
Columns

2. Use Variables (VAR)

3. Understand Context Transition

4. Keep Filters Explicit in CALCULATE()

5. Avoid FILTER() for Simple
Conditions

6. Reduce Dependencies on Entire
Tables

7. Use DIVIDE() Instead of /

8. Organize Your Measures
9. Avoid Overuse of ALL()

10. Use Clear Naming Conventions

Why It's Important:

Saves memory and improves performance

Avoids redundant calculations, improves
readability

Ensures expected behavior when switching
contexts

Prevents unexpected filtering issues

Improves performance by reducing
iterations

Limits computational overhead

Prevents division by zero errors

Create Measure Tables & Folders
Prevents unexpected filter removal

Improves maintainability and collaboration

Example:

TotalSales = SUM(Sales[Amount])

VAR Revenue = SUM(Sales[Revenue]) RETURN Revenue

CALCULATE(SUM(Sales[Amount])) converts row to filter
context

CALCULATE(SUM(Sales[Amount]),
SAMEPERIODLASTYEAR(Date[Date]))

CALCULATE(SUM(Sales[Amount]), SalesJAmount] > 100)

CALCULATE(SUM(Sales[Amount]), Customer[Category] =
"Premium™)7

DIVIDE(SUM(Sales[Profit]), SUM(Sales[Revenue]), 0)

CALCULATE(SUM(Sales[Amount]), ALL(Sales)) (use with
caution)

TotalSalesAmount, CustomerCount

Next Steps for Learning

« K.I.S.S. —Keep it Simple Stupid.

« Start with small datasets (Excel or
CSV) before working with large
databases.
with different online data sources
« Follow guided tutorials (Microsoft
Learn, YouTube, blog posts).

« Work on real-world projects to
reinforce concepts, even if its just for you.

Attend a Free 1 Day Event Workshop:
Microsoft Dashboard in a Day

DASHBOARD
IN A DAY

Frexa Training Course

Dashboard ina Day - UB)
Technology Innovations,
Inc. - United States

09/25/2024 | 10:00 - 18:00 (CDT)

&% Digital
& English (United...
% Training

Dashboard in a Day -
PragmaticWorks - United
States

0972772024 | 0800 - 16:00 {CODT)

@ Digh
% English (United...
& Training

Pragmatic Works DAX Cheat Sheet for Beginners

Dashboard in a Day - A
OmniData Insights -
United States

09/26/2024 | 08:00 - 16:00 (COT)

5 Digital
g3 English (United...
s Training

Registration and details =

Dashboard in a Day -
smart Bl - United States
10/01/2024 | 08:00 - 16:00 (COT)

ﬂ Digital
€% English (United..
& Tralning

e -

Hands-On, Practical Learning Experience

Rapid Skill Acquisition

Guided Instruction from Experts

Structured Learning Agenda

Real-World Application of Skills

Access to Workshop Materials & Resources

Networking Opportunities

Personalized Feedback & Support

Boosts Confidence with Power Bl

Preparation for Advanced Learning

Cost-Effective Training Option

Immediate Insight into Power Bl's Capabilities

Exposure to Power Bl Service Features

2" | Learn Click to start: Microsoft Learn

700 xP

Get started building with Power B

= Microsoft Learn

Beginner Data Analyst Business Analyst Business User Functional Consultant Power Bl I ntrod u Ci ng a new a p proach to Iea rni ng

i @ o

Learn about Power Bl, the building blocks and flow of Power Bl, and how to create compelling,

interactive reports.

This module helps prepare you for Exam PL-200: Microsoft Power Platform Functional Consultant.

Learning objectives

In this module, you'll learn:

* How Power Bl services and applications work together.

» Free Access to High-Quality Content

* Explore how Power Bl can make your business more efficient.

* How to create compelling visuals and reports, o Structured Learnlng Paths
® Add * Hands-on Labs and Interactive Exercises

» Official and Up-to-Date Content
* Integration with Certifications
» Gamified Learning Experiences (Points, Badges)

Prerequisites
None

This module is part of these learning paths

Create and use analytics reports with Power Bl ° Self_Paced Lea rn | ng
Get started with Microsoft data analytics . .
Get started with Power Bl } ¢ Community and Q&A Integration

» Comprehensive Coverage of Power Bl Features
» Scenario-Based Learning Modules

by (2 ENTERPRISEDMA

Beginhers Guide
to DAX

Beginner

Beginners Guide
to Power Bl

Total points: 358 XP O © 2 hours

FREE COURSE - Ultimate Beginners Guide To Power BI -

Total points: 407 XP O

Course by (2 ENTERPRISED

© 3 hours

http://portal.enterprisedna.co/p/ultimate-beginners-quide-to-power-bi

FREE COURSE - Ultimate Beginners Guide To DAX -

http://portal.enterprisedna.co/p/ultimate-beginners-quide-to-dax

FREE - 60 Page DAX Reference Guide Download -

https://enterprisedna.co/dax-formula-reference-guide-download

NA

) ENTERPRISE DNA

‘@’ Sam McKay, CFA

Some Free Courses else Paid Subscription

Click to start:

Expert-Led Training & Courses
Focus on Real-World Scenarios & Problem-Solving
* Finance Focused
Comprehensive Course Catalog
Access to Learning Summits & Workshops
Extensive Resource Library
* Power BI .pbix file downloads
Customized Learning Paths
Innovative Data Challenges & Projects
Supportive Community Forum
Access to Power BI Showcases
Focus on Advanced Analytics & Al Integration
On-Demand, Self-Paced Learning
Gamified Learning Experience (Points & Badges)
Certification Programs
Emphasis on Visualization & Design

9 PRAGMATIC
WORKS

https://pragmaticworks.com/

Private Training

Train your team to
become their best

Pragmatic Works' private training provides a range of exclusive
options tailored to your team'’s needs. Our expert-led sessions can be
conducted on-site at your location or virtually, ensuring flexibility
and convenience. This personalized approach allows us to address
your specific training requirements, fostering operational

effectiveness and skill development to help your business thrive.

Schedule Meeting

Private Training

On-Demand Learning

Bootcamps

Season Learning Pass

Stream Pro Plus

Certification Training

Q&A and Closing

Questions?

i
ower Analyds

a class 0
Expressions © D

Calcuate

Caiculge [3-

1.0LpPa 1. 2B
,tBs .80

-mmgr, 4.9

B Oterd.lue 1.50

GierOre 13.90
Dewarve: 13.80
Bonrmy . 19RE
Mmtsoin 1..0C
Acoiner; 3.9%

SUMX

SuMX
Relacted

Overdute Invoices

Su

& Re 1
N u

N

Payment Trends

AX’Data Analysis Ex
r:ﬁt?(to Analyze your. custol

Cutomer

Risk Scaes

v
(143

Y% 0 o o

faf

4

A

