Credit Congress Session 37063

CREDIT CONGRESS

& EXPO‘ Mi |

Discovering DAX

Presented by: Rebekyah Brewer
Date: May 21, 2025
Session: #37063

4/14/2025

Session 6 .
Session 1
Platform
Publishin Power Bl
& Potential
Power

Key Learning Outcomes:

Learn the basics of DAX (Data Analysis
Expressions) and why it’s essential for creating
dynamic metrics and measurements in Power BI.
In this session, you'll explore how DAX enables

Ses§|or.1 > advanced calculations, time intelligence, and Session 2

Designing contextual analysis, key components for building Power

Dynamic custom KPlIs and insights for credit managers. Query
Dashboards Understanding DAX will help you create tailored Proficien cy

measures that adjust dynamically based on
filters, comparisons over time, and multi-table
relationships, empowering you to deliver
accurate, interactive, and insightful credit

management reports.
. Session 3
Session 4
K . Data
Discovering

Modeling
DAX ~ Done Right

Credit Congress Session 37063 4/14/2025

Power BI l ’ START: Power

Dashboards Query

Power Bl Report

. Building Data
to Power BI Modeling
Service Sequence

Data

Visualizations ‘ l

DAX

Prerequisites - Technical

Software Requirements
* Power Bl Desktop (Free) — Power Query is built into Power Bl for data
transformation.
* Excel (2016 and later, or Microsoft 365) — Power Query is available in the "Get &
Transform" section.
* Windows OS (Windows 10 or later recommended) — Power Query in Power Bl is
optimized for Windows.
Optional:
* Power Bl Service (Pro or Premium Per User License) — If publishing reports online,
you'll need a Power Bl account

Credit Congress Session 37063 4/14/2025

Prerequisites - Technical

Computer Capabilities & Performance Considerations
Power Query processes data transformations, and performance can be impacted by your
system specs.

* RAM - 8GB minimum; 16GB+ recommended for handling large datasets.

* Processor — Intel i5/i7 or AMD Ryzen 5/7 or higher for better performance.

* Storage (SSD Recommended) — Faster SSD drives improve data processing speed
compared to HDD.

* Internet Speed — If working with cloud data, a stable internet connection is necessary.

Prerequisites - Experience

Before diving into DAX, a beginner needs a good grasp of:

Basic Understanding of Power Bl
: Know how to import data, create visualizations, and use different report elements.
- While DAX is for calculations, Power Query is for data transformation. A basic
understanding of ETL (Extract, Transform, Load) in Power Query helps.
Understand relationships between tables, star schema vs. snowflake schema,
and cardinality.
Relational Databases & Tables
* Familiarity with concepts like tables, columns, rows, primary keys, and foreign keys
* Knowing how different tables relate to each other (one-to-many, many-to-one, many-to-many).
Excel Functions & Formulas (Optional but VERY Helpful)
* If you are comfortable with Excel formulas, especially SUMIFS, COUNTIFS, VLOOKUP,
INDEX/MATCH, and ARRAY formulas, learning DAX will be easier.
* Understanding how Excel PivotTables work can also be helpful since DAX operates on columnar
data similar to PivotTables.

Credit Congress Session 37063 4/14/2025

Prerequisites - Experience

Logical Thinking & Problem Solving
* Since DAX is a functional language, writing formulas requires structured thinking.
* Debugging DAX errors requires patience and an analytical mindset.
Understanding Data Types & context
* Data Types in Power Bl: Understand different data types like Text, Whole Number, Decimal,
Boolean, and Date/Time.
* Row Context vs. Filter Context: One of the most fundamental DAX concepts.
» Evaluation Context: How filters and row context change based on calculations.

Hands-On Practice in Power Bl
* Practice common DAX functions like
* Aggregation: SUM, AVERAGE, COUNT, DISTINCTCOUNT
* Filter-based calculations: CALCULATE, FILTER, ALL, ALLEXCEPT
* Time intelligence: TOTALYTD, SAMEPERIODLASTYEAR, DATESYTD
* Table functions: SUMMARIZE, ADDCOLUMNS, SELECTCOLUMNS
* Practice with sample datasets or in your own daily exports
* Practice. Practice. Practice

Who is DAX For?

User Group How Power Bl Benefits Them

1 Power Bl Users Anyone building Power Bl dashboards and needing custom
calculations, dynamic aggregations, and time intelligence.
2 Excel Data Analysts aka Data Wizards Those who want to move beyond SUMIFS and VLOOKUP to more

efficient calculations in Excel.

3 Financial Analysts and Accountants Useful for creating custom financial metrics, forecasts, and
rolling average reports in Power Bl & Excel or on top of others
Power Bl Reports.

4 Self-Service Bl User Business users who need to write custom formulas for KPIs and
dynamic calculations.

6 Credit Managers & Sales Teams Analyzing sales trends, year-over-year comparisons, and
customer segmentation, AR Portfolio, Payment Trends.

Credit Congress Session 37063 4/14/2025

Discovering DAX oy
, , s on DAX/Data Ana
Session Overview N p ., 2.51258 FAX.to Analyze your custor

power Analy3s _P_/_———’——

A Relat Cutomer
|I Expressions | " calcuate S i Risk Scaes
=ity >N Carta o0 SUMX\& (@@P
an w wowes 4.8 <
- oo uerdure 1,50 Sumx w Am]

* Introduction & Prerequisites il Toae e 1% Relasted e
;_J m foos Jemen o Overdute Invoices t
* Understanding DAX ? s um. oo i i 3s Payment Trends |
— m :;:ln ag N 0 8 e
* Core Features & Functionalities a7 bl < | (
4%
. . — /4 — — ()
* Deep Dive into Measures - - : o =i ga—
* Best Practices in DAX - Z- .
* Wrap-Up, Q&A, Further Resources = L
> V= N

Understanding DAX

(Data Analysis Expressions) D Ax L)
: 3 - power =]

=-sum? A=sum2
A-sun2 x)=sx32

* Definition of DAX TS -cax2 A==
« What is DAX? N=xx2 X=x12
* Purpose & Application . Ay ’/}‘=—‘2 A = fite2

» Basic Concepts
* DAX Language Format
* Calculated Columns
* Syntax & Expression Eval.

Credit Congress Session 37063 4/14/2025

DAX - Definition

DAX (Data Analysis Expression) — DAX (Data Analysis
Expressions) is the formula language used in Power BI, Excel
Power Pivot, and Analysis Services.

It is designed for dimensional data modeling.

DAX allows users to create custom calculated columns,
measures, and tables to enhance reports and dashboards.

DAX — Does: Purpose & Application:

It enhances every data model. It
allows users to add their own analysis and calculations on top of a data model
or data source.

— Unlike traditional procedural programming, DAX
works like Excel formulas and is optimized for data storage.

— DAX operates within row context (working on a
single row at a time, like calculated columns) and filter context (evaluating
measures based on filters applied in a report).

Credit Congress Session 37063 4/14/2025

DAX — Purpose & Application:

— Functions like SUM(), AVERAGE(), FILTER(), and
CALCULATE() allow powerful data manipulation

— DAX supports functions like TOTALYTD(),
SAMEPERIODLASTYEAR(), and DATESBETWEEN() for time-based
calculations.

— DAX can traverse table relationships, allowing
complex multi-table calculations using functions like RELATED() and
RELATEDTABLE().

DAX — Syntax

Calculating Margin:

= [SalesTotal] — [TotalCost]

© 000

(=) Signs operator indicates beginning of formula, just like Excel.

First referenced column. Column references are always in brackets []
(-) Subtract operator.

Referenced column []

Bl ol

Credit Congress Session 37063 4/14/2025

DAX — Syntax

Measures take up no space except in the field pane where o

they are stored and dragged to visuals as needed

How to create a Measure using a function: \‘

Sum of Sales Amount = SUM(FactSales[SalesAmount])

Name of Measure before (=)

(=) Signs operator indicates beginning of formula, just like Excel.

Function, SUM, AVERAGE, MIN, MAX, SUM adds up all of referenced columns

() Parenthesis surround the argument just like they would in Excel.

Reference Column in brackets

Table name in which the column resides. If spaces are in column name, you must enclose with single quotation marks.
‘‘ asin ‘Fact Sales’[SalesAmount]

oukwNE

Practice: Calculated Columns

Columnar Calculations — Are used to create new columns in a table
referred to as Calculated Columns

If you have ever added a new column to a ‘Table’ in Excel and enjoyed the
auto calculations all the way down, Calculated Columns are very similar.

I =[@SalesAmount]*[@[Sales Tax Rate]]
E G H | J K L M N 5]
der_StartDate - Margin % ﬂ Order_CompletionDate SalesAmmmﬂ Equipment Ammmtu LabcrArm:l.m’ﬂ Sales Tax Rate ﬂ Payments_ﬂmivedﬂ Drdar_lnhnca Columnl
1/31/2021 21.30% 2/14/2021 § 392,880.00 $ 298,124.29 $ 94,755.71 7.45% $ 392,880.00 $ = 29,260.76
8/18/2021 12.21% 9/1/2021 § 34342100 § 133,836.62 § 209,584.38 8.33% $ 343,421.00 $ - [28613.97 Ic
1nnmna 14910 inmamnat ¢ a70a0700 @ ta1 R 98 ¢ taTa7r 7 . ¢ 270 40200 ¢ 2 706 0

Credit Congress Session 37063

4/14/2025

Power BI Calculated Column Example

I =
Name [Sats TcAmourt | | 3 Format [Camency] | Ewmstolm) B 48 H O
Data type | Fixed decimal num... v| $ v %[9 |58 [Dete category |Uncategorized v Sortby Data Manage New

columnv | groupsv | relationships | column

Structure Formatiing: Froperties Sort Groups Reistionships | Cakculations

1 Sales Tax Amount = “Sales’'[Sales Amount]*'Sales’[Sales Tax Rate] o

ndex_SK [~ Employeeindex SK [*] Sales Date [*| Order Start Date [*| Margin % [] Order Completion Date [~] Sales Amount [~ | Equipment Amount [*] Labor Amount [~] Sales Tax Rate [*] P ts Recei

959 205 7/2: 2 i5. §451439.00 §203,888.77 $247550.23 $0.00

959 o 205 29, & 00 §n 29 ST 1 §0.00 o

797 439 26. B $0.00

797 433 5. $170,504.00 ”, 166 1 $0.00

797 439 12/5/2021 30. §120.807.00 £862.68 £12($0.00
=1 1 %1 1
= [Sales Amount] [Sales Tax Rate]

1. Name your column before the “=“ symbol

2. Identify the table with Apostrophe Symbols °___’. IntelliSense will provide you a list of available tables to
select from.

Identify and Select the Column you want to aggregate. Columns are identified between [|

Type your operator, *, +, -, etc...

5. Identify the table and column to be operated on.

= W

OPY USR] Sales Tax Amount K

$4454630 &
$17313.35 8

$41,507.67
$17.26855
1030684

Calculated Column Examples:

Sales Tax Amount = ‘Sales’[Sales Amount]*’Sales’[Sales Tax Rate]

Salesperson Name = (Salesperson[EmployeeName])

Salesperson Name & Location =
RELATED(Salesperson[EmployeeName]) RELATED('Salesperson'[Location])

*Notice the table identifiers ‘ apostrophes are not always required to write a Calculated Column.
Credit Risk Alert = IF(RELATED(Customers[Credit Risk Level]) = "High Risk", "Alert", " ")

Margin Size Bonus = IF([Margin %] >=.25, .02, 0)

Credit Congress Session 37063 4/14/2025

Best Practice: Calculated Columns

When to Use a Calculated Column When NOT to Use a Calculated Column

/ Row-Level Calculations (e.g., X Aggregations — Use Measures
Concatenating names, Classification) instead

/' Sorting or Filtering needs, X Simple Transformations — Use
Slicer Power Query

«/ Required for Relationships X Large Data Models — Reduces
between tables performance efficiency

«/ Data Model Constraint - X{ Anything that can be calculated

Conditional Flags for later aggregation dynamically with measures

Calculated Columns vs Measures

Feature Calculated Column Measure
Computed row by row during data
Calculation Type model refresh Computed on the fly based on user interaction.
Stored in the model, consuming Not stored, recalculated dynamically when
Storage memory needed
Evaluation Context Works at the row level (row context) Works at the aggregation level (filter context)

More efficient, as it's calculated only when
Performance Impact Increases memory usage and file size needed

Used when you need a new column Used for aggregations (SUM, AVERAGE, COUNT,
Use Case field in your data table etc.) in reports

Sales[Profit] = Sales[Revenue] -
Sales[Cost] (adds a new column to Total Sales = SUM(Sales[Revenue]) (computed
Example the table) dynamically)

10

Credit Congress Session 37063 4/14/2025

Basic Concepts:

Measures perform calculations * Calculated at Query Time — Unlike calculated columns,

on data at the time of query, which are computed when the data is loaded or
! refreshed, measures are evaluated dynamically when

used in a report.

responding to user interactions
such as filtering and slicing.

* Aggregated Results — Measures perform calculations
They are dynamic formulas across multiple rows rather than row by row.
that aggregate data more

. . * Context-Aware — Measures change based on the filter
efficiently then calculated &

and row context applied in a report (e.g., filtering by
columns. region, date, or product category).

The value changes based on
the interaction of the reports
and context of the filters.

* Stored in the Model — Unlike Excel formulas, measures
do not exist as part of the dataset but as metadata
inside the data model.

File Home Insert Modeling View Optimize Help External tools

v B sales
[=] ﬁ:‘l =
= B B
=) Q A UJ Customerinde
Manage New Quick New New Mark as date New Manage View O Employeelnde...
relationships measure measure column table table parameter v roles as o
Relationships Calculations Calendars Page refresh Parameters Security U Z qu‘”pment A..

. [Labor A t
Created measures are shown in 2 LsbetAurioun

the Fields list beneath their (J Margin %

assigned table with a little — auto generated, (] Order Comple...

calculator icon beside them based on fields you drag and drop. (] ¥ Order Outstan..

instead of the sum icon. — are user-defined @ OrderstartDe.
calculations created by DAX. (] Orderindex_SK

You can name them whatever — Pre-built O ¥ payments Rec...

you like. calculations in Power Bl for common O Region sk
aggregations. A.

They are Report Level — custom . Lz

, . — Context Specific 0 Sales Date

metrics created in a report on calculations applied directly within a .

top of the dataset, added by <ual. not st ppd i | y (J sales Tax Rate

users or by data modelers. visual, not stored in a column or a B. U & sales Total G

field.

11

Credit Congress Session 37063

4/14/2025

Feature

Definition:

Implicit Measures

Automatically created when dragging a
numeric field into a visual

Implicit & Explicit Measures

Explicit Measures

User-defined calculations written using DAX

Created By:

Power Bl (Auto-generated)

Report Developer (Manually using DAX)

DAX Requirement:

No DAX needed

Requires DAX formula

Customization:

Limited (only basic aggregations)

Fully customizable with complex logic

Reusability:

Cannot be reused in other measures

Can be reused in multiple measures and
calculations

Performance:

Generally optimized for quick visual
calculations

Can be optimized using best DAX practices

Complexity:

Suitable for simple aggregations (SUM,
AVERAGE, COUNT)

Suitable for complex calculations (Year-over-
Year, Ratios, etc.)

Best Use Case:

Quick, ad-hoc analysis

Enterprise-level reporting, consistency, and
scalability

Common
DAX
Functions

Aggregation: SUM(), AVERAGE(), MIN(), MAX()

Logical: IF(), SWITCH(), AND(), OR()

Filter and Context Modification: CALCULATE(), FILTER(), ALL(),
REMOVEFILTERS()

Date & Time Intelligence: DATEADD(), TOTALYTD(), EOMONTH()

Text Functions: CONCATENATE(), SEARCH(), LEFT(), RIGHT()

Table Manipulation: SUMMARIZE(), ADDCOLUMNS(), UNION(),
CROSSJOIN(), Relationship Navigation USERELATIONSHIP()

12

Credit Congress Session 37063

Function
SUM
AVERAGE
MIN
MAX
COUNT
COUNTA
COUNTROWS

DISTINCTCOUNT

SUMX

AVERAGEX

MINX

MAXX

DAX Fundamental Aggregation Measures

Description Syntax Example
Returns the sum of a column. SUM(<column>) SUM(Sales[Amount])
Returns the average (arithmetic mean) of a column. AVERAGE(<column>) AVERAGE(Sales[Amount])
Returns the smallest value in a column. MIN(<column>) MIN(Sales[Amount])
Returns the largest value in a column. MAX(<column>) MAX(Sales[Amount])
Counts the number of numeric values in a column. COUNT(<column>) COUNT(Sales[Amount])
Counts the number of non-empty values in a column. COUNTA(<column>) COUNTA(Sales[CustomerName])
Counts the number of rows in a table. COUNTROWS(<table>) COUNTROWS(Sales)
Counts the number of distinct values in a column. DISTINCTCOUNT(<column>) DISTINCTCOUNT(Sales[CustomerID])
Returns the sum of an expression evaluated for each row in a SUMX(Sales, Sales[Quantity] *
table. SUMX(<table>, <expression>) Sales[Price])
Returns the average of an expression evaluated for each row in AVERAGEX(<table>, AVERAGEX(Sales, Sales[Quantity] *
atable. <expression>) Sales[Price])

Returns the smallest value of an expression evaluated for each
row in a table. MINX(<table>, <expression>) MINX(Orders, Orders[OrderTotal])

Returns the largest value of an expression evaluated for each
row in a table. MAXX(<table>, <expression>) MAXX(Orders, Orders[OrderTotal])

Row Context -

Context. Context. Context.

Understanding context is essential in DAX. There are two primary types: row context and filter
context. Let's start by examining row context.

Row context refers to the current row being processed.
Example: Our calculated column for Margin with the formula [SalesAmount] - [TotalCost].

This formula computes a value for each row by subtracting the TotalCost from the SalesAmount in the same
row. DAX understands which values to use because it applies the calculation within the context of each row.

In a specific row where SalesAmount is $101.08 and TotalCost is $51.54, the Margin value is calculated as
$49.54 by subtracting TotalCost from SalesAmount.

Row Context exists not just in Calculated Columns but in the SUMX, AVERAGEX, MINX and MAXX Functions.

4/14/2025

13

Credit Congress Session 37063

Filter Context -
Pivot Tables are all about filter context.

* Visuals apply a filter context automatically.

* Slicers provide a filter context.

Context. Context. Context.

Filter context is crucial in DAX because it determines which data is used in calculations.

* Explicit filter functions in DAX like CALCULATE, ALL, RELATED, FILTER allow you to include additional
filters to your measures and even override existing filter context as needed

FILTER CONTEXT:

1. Measure Name

2. = Beginning formula

3. CALCULATE Function evaluates an expression, as an

4. Parenthesis () surround argument(s).

CCTV Sales Total = CALCULATE([

argument, in a context that is modified by special filters.

\

Sales], DimRegion[SalesType]=“CCTV”)

o oo

5. A measure [Sales] in the same table as expression. The
sales measure has the same formula:
=SUM(FactSales[SamesAmount])

6. A comma (,) separates each filter.
7. Referenced column with = “CCTV” as filter
Ensures that only sales values, defined by the filter are

calculated only for rows in the DimChannel with value
“CCTV”.

4/14/2025

14

Credit Congress Session 37063

4/14/2025

Functi

FILTER

ALL

ALLEXCEPT

ALLSELECTED

REMOVEFILTERS

KEEPFILTERS

CALCULATE

CALCULATETABLE

VALUES

DISTINCT

DAX Filters for Measures — Context Override

Description
Returns a filtered table based on a condition.

Removes all filters from a table or column.

Removes all filters except on specified columns.

Removes filters applied by visual interactions but
retains others.

Removes all filters from the specified columns or
tables.

Applies existing filters before executing a
calculation.

Evaluates an expression in a modified filter context.

Returns a table with a modified filter context.
Returns a single-column table of unique values.

Returns a table of distinct values from a column.

Syntax
FILTER(<table>, <condition>)
ALL(<table_or_column>)
ALLEXCEPT(<table>, <column1>,
<column2>, ...)
ALLSELECTED(<table_or_column>)

REMOVEFILTERS(<table_or_column>

Example

FILTER(Sales, Sales[Amount] > 1000)

ALL(Sales)

ALLEXCEPT(Sales, Sales[Region])

ALLSELECTED(Sales[Category])

) REMOVEFILTERS(Sales[Product])

KEEPFILTERS(FILTER(Sales, Sales[Amount] >
KEEPFILTERS(<expression>) 1000))

CALCULATE(<expression>, <filterl>, CALCULATE(SUM(Sales[Amount]), Sales[Region]
<filter2>, ...) ="West")

CALCULATETABLE(<table>, <filterl>, CALCULATETABLE(Sales, Sales[Category] =

<filter2>, ...)
VALUES(<column>)

DISTINCT(<column>)

"Electronics")
VALUES(Sales[Product])

DISTINCT(Sales[CustomerID])

DAX Logical Conditional Measures

Function Description Syntax Example
IF(<condition>, <true_value>,
IF Returns one value if a condition is TRUE and another if FALSE. <false_value>) IF(Sales[Amount] > 1000, "High", "Low")
Evaluates an expression against multiple conditions and SWITCH(<expression>, <valuel>, <result1>, SWITCH(Sales[Category], "A", "Type 1", "B",

SWITCH returns a corresponding value. ..., <else_result>) "Type 2", "Other")

AND(Sales[Amount] > 1000, Sales[Discount]
AND Returns TRUE if all conditions are TRUE. AND(<condition1>, <condition2>) <10)

OR(Sales[Region] = "West", Sales[Region] =
OR Returns TRUE if at least one condition is TRUE. OR(<condition1>, <condition2>) "East")
NOT Returns the opposite of a Boolean expression. NOT(<condition>) NOT(Sales[Approved])

IFERROR(Sales[Amount] / Sales[Quantity],
IFERROR Returns a specified value if the expression results in an error. IFERROR(<expression>, <alternate_value>) 0)
ISBLANK' Checks if a value is blank (empty). ISBLANK(<value>) ISBLANK(Sales[CustomerID])
ISERROR Checks if an expression results in an error. ISERROR (<expression>) ISERROR(Sales[Amount] / Sales[Quantity])
TRUE Returns the Boolean value TRUE. TRUE() TRUE()
FALSE Returns the Boolean value FALSE. FALSE() FALSE()

15

Credit Congress Session 37063

Function

TOTALYTD

TOTALQTD

TOTALMTD

PREVIOUSYEAR

PREVIOUSMONTH

PREVIOUSDAY

DATEADD

PARALLELPERIOD

FIRSTDATE

LASTDATE

PREVIOUSQUARTER

SAMEPERIODLASTYEAR

DAX Time Intelligence Measures

Description

Calculates year-to-date total for a measure.
Calculates quarter-to-date total for a
measure.

Calculates month-to-date total for a
measure.

Returns the measure value for the previous
year.

Returns the measure value for the previous
quarter.

Returns the measure value for the previous
month.

Returns the measure value for the previous
day.

Returns the measure value for the same
period in the previous year.

Shifts dates forward or backward by a
given number of intervals.

Returns a parallel period, shifting by a
given number of intervals.

Returns the first date in the column or
table.

Returns the last date in the column or
table.

Syntax
TOTALYTD(<expression>, <dates_column>[,
<filter>])

TOTALQTD(<expression>, <dates_column>[,
<filter>])
TOTALMTD(<expression>, <dates_column>[,
<filter>])

PREVIOUSYEAR(<dates_column>)
PREVIOUSQUARTER(<dates_column>)
PREVIOUSMONTH(<dates_column>)
PREVIOUSDAY(<dates_column>)
SAMEPERIODLASTYEAR(<dates_column>)
DATEADD(<dates_column>,
<number_of_intervals>, <interval_type>)
PARALLELPERIOD(<dates_column>,
<number_of_intervals>, <interval_type>)

FIRSTDATE(<dates_column>)

LASTDATE(<dates_column>)

Example
TOTALYTD(SUM(Sales[Amount]),
Sales[Date])
TOTALQTD(SUM(Sales[Amount]),
Sales[Date])
TOTALMTD(SUM(Sales[Amount]),
Sales[Date])
PREVIOUSYEAR(Sales[Date])
PREVIOUSQUARTER(Sales[Date])
PREVIOUSMONTH(Sales[Date])
PREVIOUSDAY(Sales[Date])
SAMEPERIODLASTYEAR(Sales[Date])
DATEADD(Sales[Date], -1, YEAR)
PARALLELPERIOD(Sales[Date], -1, YEAR)
FIRSTDATE(Sales[Date])

LASTDATE(Sales[Date])

Excel:

Benefits of
Learning DAX in

1. Excel is familiar territory for all of us

2. Increased opportunities for internal
use leads to wider application

3. Increased usage cases leads to
increased experience

4. Small quick wins will encourage

motivation to learn more.

5. Logical transition to Power PI
through PowerPivot

fame: Sales

ure Mame: Sales Amount Total

Je Description: | Sum of Sales

fe

=5UMsales[SalesAmount]]
[SUM(ColumnName] |

srmula: Check DAX Formula

@Customers[(ﬁity]
@Customers[Company_Name]
Customers[Creation_Date]
Customers[Credit_limit]
@Customers[f:redit_risk]
Catego ECustomers[CustomerlD_NK]
[Generd

| Date Customers[Email]

@Customers[Customerlndex_SI{]

|
I'ﬂumbe Customers[5alesPersanlD_FK]
Curren|
TRUEH @ Customers{5tate]
1

— |

4/14/2025

16

Credit Congress Session 37063

Function

ADDCOLUMNS

SUMMARIZE

SUMMARIZECOLUMNS

SELECTCOLUMNS

FILTER

ALL

DISTINCT

VALUES

CROSSJOIN

UNION

INTERSECT

EXCEPT

Descri

Adds calculated columns to a table.

Returns a summary table with aggregated <group_by_column>, ...][, <name>, <expression>,

values.

Returns a summary table with filters
applied.

Returns a table with selected columns.
Returns a filtered table based on a
condition.

Removes all filters from a table or
column.

Returns a table of distinct values from a
column.

Returns a single-column table of unique
values.

Returns a Cartesian product of two
tables.

Returns the union of two tables,
removing duplicates.

Returns the intersection of two tables.
Returns the difference between two
tables (values in first but not in second).

DAX Fundamental Table Functions

Syntax
ADDCOLUMNS(<table>, <column_name>,

Example
ADDCOLUMNS(Sales, "Profit",

<expression>[, <column_name>, <expression>, ...]) Sales[Revenue] - Sales[Cost])

SUMMARIZE(<table>, <group_by_column>|,

SUMMARIZECOLUMNS(<group_by_column>[,
<group_by_column>, ...][, <name>, <expression>,

=)

SELECTCOLUMNS(<table>, <name>, <column>[,

<name>, <column>, ...])

FILTER(<table>, <condition>)
ALL(<table_or_column>)
DISTINCT(<column>)

VALUES(<column>)

CROSSJOIN(<table1>, <table2>)
UNION(<tablel>, <table2>[, <table3>, ...])
INTERSECT(<tablel>, <table2>)

EXCEPT(<table1>, <table2>)

SUMMARIZE(Sales, Sales[Date],
Sales[Region], "Total Sales",
SUM(Sales[Amount]))
SUMMARIZECOLUMNS(Date[Year],
Region[RegionName], "Total Sales",
SUM(Sales[Amount]))
SELECTCOLUMNS(OrderDetails, "Order ID",
OrderDetails[OrderID], "Product",
OrderDetails[Product])

FILTER(Sales, Sales[Amount] > 1000)
ALL(Customer)
DISTINCT(Salesperson[SalespersonID])
VALUES(Region[RegionName])
CROSSJOIN(Salesperson, Region)
UNION(OrderDetails_2023,
OrderDetails_2024)
INTERSECT(Customer_US,

Customer_Canada)

EXCEPT(Sales, Sales_Excluded)

Date Table — DAX Method

DateTable =

ADDCOLUMNS (
CALENDAR (DATE(2015,1,1), DATE(2030,12,31)),
"Year", YEAR([Date]),
"Month", FORMAT([Date], "MMMM"),
"Month Number", MONTH([Date]),
"Quarter", "Q" & FORMAT([Date], "Q"),
"Day of Week", FORMAT([Date], "dddd"),
"Day of Year", FORMAT([Date], "DDD"),
"Week Number", WEEKNUM([Date])

4/14/2025

17

Credit Congress Session 37063 4/14/2025

Measure Name Description DAX Formula
Total AR Total outstanding Accounts Receivable (A/R) balance. Total AR = SUM(Invoices[Outstanding Balance])
Current AR Balance of invoices that are not overdue. Current AR = CALCULATE([Total AR], Invoices[Due Date] >= TODAY())
Overdue AR Total amount of past-due invoices. Past Due AR = CALCULATE([Total AR], Invoices[Due Date] < TODAY())
AR 0-30 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date], TODAY(),
AR 0-30 Days Total A/R balance for invoices due within 0-30 days. DAY) <= 30)
AR 31-60 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date], TODAY(),
AR 31-60 Days Total A/R balance for invoices due within 31-60 days. DAY) > 30, DATEDIFF(Invoices[Due Date], TODAY(), DAY) <= 60)
AR 61-90 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date], TODAY(),
AR 61-90 Days Total A/R balance for invoices due within 61-90 days. DAY) > 60, DATEDIFF(Invoices[Due Date], TODAY(), DAY) <= 90)
AR Over 90 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date],
AR Over 90 Days Total A/R balance for invoices due over 90 days. TODAY(), DAY) > 90)
Categorization of AR into aging buckets (e.g., 0-30, 31-60, SWITCH(TRUE(), AR[DaysPastDue] <= 30, '0-30 Days', AR[DaysPastDue] <= 60,
61-90, 90+ days). '31-60 Days', AR[DaysPastDue] <= 90, '61-90 Days', '90+ Days')
AR Aging Category
Overdue AR % Percentage of total A/R that is overdue. Overdue AR % = DIVIDE([Past Due AR], [Total AR], 0)
Days Sales Outstanding - average number of days to collect
DSO payment. DSO = DIVIDE([Total AR] * 365, [Total Sales])
Top 10 Customers by Table List of top 10 customers with the highest outstanding
AR AR. TOPN(10, AR, AR[OutstandingAmount])
Credit utilization ratio - how much of total credit limit is Credit Utilization = DIVIDE(SUM(Invoices[Outstanding Balance]),
Credit Utilization used. SUM(Customers[Credit Limit]), 0)
Top 5 Customers Ranks customers by outstanding A/R balance. Top 5 Customers = RANKX(ALL(Customers), [Total AR], , DESC)
Estimated cash inflow from outstanding invoices, adjusting Expected Cash Inflow = SUMX(Invoices, Invoices[Outstanding Balance] * (1 -
Expected Cash Inflow for default risk. Invoices[Estimated Default Rate]))
Measure Name DAX Formula Description
Total Sales SUM('FactSales'[Order Amount]) Total revenue from sales
Total Equipment Sales SUM('FactSales'[Equipment Portion]) Revenue from equipment sales
Total Labor Sales SUM('FactSales'[Labor Portion]) Revenue from labor services
Total Sales Tax SUMX('FactSales', 'FactSales'[Order Amount] * 'FactSales'[Sales Tax Rate]) Total sales tax collected
Equipment Contribution % DIVIDE([Equipment Sales], [Total Sales], 0) Percentage of total sales from equipment
Labor Contribution % DIVIDE([Labor Sales], [Total Sales], 0) Percentage of total sales from labor
Total Cost SUM('FactSales'[Cost Portion]) Total cost of sales
Gross Profit [Total Sales] - [Total Cost] Total sales revenue minus total cost
Gross Profit Margin % DIVIDE([Gross Profit], [Total Sales], 0) Percentage of sales revenue that is profit
VAR LastYearSales = CALCULATE([Total Sales], SAMEPERIODLASTYEAR('FactSales'[Sales
Date]))
Sales YoY Growth % RETURN DIVIDE([Total Sales] - LastYearSales, LastYearSales, 0) Year-over-Year sales growth percentage
VAR LastMonthSales = CALCULATE([Total Sales], PREVIOUSMONTH('FactSales'[Sales
Date]))
Sales MoM Growth % RETURN DIVIDE([Total Sales] - LastMonthSales, LastMonthSales, 0) Month-over-Month sales growth percentage
Sales by Region SUMX('FactSales', 'FactSales'[Order Amount]) Total sales categorized by region
Sales by Salesperson SUMX('FactSales', 'FactSales'[Order Amount]) Total sales per salesperson
Average Order Value (AOV) DIVIDE([Total Sales], DISTINCTCOUNT('FactSales'[Customer Name]), 0) Average value of customer orders
Customer Sales % Percentage contribution of each customer to total
Contribution DIVIDE([Total Sales], CALCULATE([Total Sales], ALL('FactSales'[Customer Name])), 0) sales
Flags customers with high sales as potentially high
High Risk Customers IF([Total Sales] > 100000, 'High Risk', '"Normal') risk
Days Sales Outstanding (DSO) DIVIDE([Total Receivables], [Total Sales]) * 30 Average number of days to collect payment
DIVIDE(SUMX('FactSales', IF('FactSales'[Days Past Due] > 30, 'FactSales'[Order Amount],
Late Payment % 0)), [Total Sales], 0) Percentage of sales with late payments
Bad Debt % DIVIDE(SUM('FactSales'[Write-offs]), [Total Sales], 0) Percentage of total sales written off as bad debt
Top 10 Customers by Sales RANKX(ALL('FactSales'[Customer Name]), [Total Sales], , DESC, DENSE) Ranks customers based on sales volume
Sales by Trade Categor SUMX('FactSales', 'FactSales'[Order Amount]) Total sales categorized by trade category

18

Credit Congress Session 37063

4/14/2025

Best Practice:

1. Use Measures Instead of Calculated
Columns

2. Use Variables (VAR)

3. Understand Context Transition

4. Keep Filters Explicit in CALCULATE()

5. Avoid FILTER() for Simple
Conditions

6. Reduce Dependencies on Entire
Tables

7. Use DIVIDE() Instead of /

8. Organize Your Measures
9. Avoid Overuse of ALL()

10. Use Clear Naming Conventions

Why It's Important:

Saves memory and improves performance

Avoids redundant calculations, improves
readability

Ensures expected behavior when switching
contexts

Prevents unexpected filtering issues

Improves performance by reducing
iterations

Limits computational overhead

Prevents division by zero errors

Create Measure Tables & Folders

Prevents unexpected filter removal

Improves maintainability and collaboration

Top 10 Best Practices for DAX

Example:

TotalSales = SUM(Sales[Amount])

VAR Revenue = SUM(Sales[Revenue]) RETURN Revenue

CALCULATE(SUM(Sales[Amount])) converts row to filter
context

CALCULATE(SUM(Sales[Amount]),
SAMEPERIODLASTYEAR(Date[Date]))

CALCULATE(SUM(Sales[Amount]), Sales[Amount] > 100)

CALCULATE(SUM(Sales[Amount]), Customer[Category] =
"Premium")7

DIVIDE(SUM(Sales[Profit]), SUM(Sales[Revenue]), 0)

CALCULATE(SUM(Sales[Amount]), ALL(Sales)) (use with
caution)

TotalSalesAmount, CustomerCount

Next Steps for Learning

' K.1.5.5.—Keep it Simple Stupid.

«/ Start with small datasets (Excel or
CSV) before working with large

databases.

with different online data sources

«/ Follow guided tutorials (Microsoft
Learn, YouTube, blog posts).

«/ Work on real-world projects to
reinforce concepts, even if its just for you.

y i

|

19

Credit Congress Session 37063

4/14/2025

Attend a Free 1 Day Event Workshop:
Microsoft Dashboard in a Day

Dashboard in a Day - UB (W]
Technology Innovations,
Inc. - United States

3 09/25/2024 | 10:00 - 18:00 (CDT)

& Digital
& English (United..,
& Training

DASHBOARD
IN A DAY

ey -

Dashboard in a Day - [m]
PragmaticWorks - United
States

[09/27/2024 | 0R0D - 16:00 (€T

& Digital
@ English (United..
@ Training

il

Pragmatic Works DAX Cheat Sheet for Beginners

Hands-On, Practical Learning Experience
Dashboard in a Day - n
OmniData Insights -

United States Rapid Skill Acquisition

09/26/2024 | 08:00 - ¥6:00 (COT) - -
Guided Instruction from Experts
% Digital

€ English (United.

i s Structured Learning Agenda

Real-World Application of Skills

Access to Workshop Materials & Resources

ey -

Networking Opportunities
Dashboard in a Day -
smart Bl - United States

Personalized Feedback & Support

10/01/2024 08:00 - 16:00 (€OT)

Boosts Confidence with Power Bl
& Digital

€ English (United

P Preparation for Advanced Learning

Cost-Effective Training Option

Immediate Insight into Power BI’s Capabilities

e -

Exposure to Power Bl Service Features

=' | Learn

] Get started building with Power BI
21 min » Module » 6 Units

& Feedback
Beginner DataAnalyst Business Analyst BusinessUser Functional Consultant Power Bl

Learn about Power B, the building blocks and flow of Power BI, and how to create compelling,
interactive reports.

This module helps prepare you for Exam PL-200: Microsoft Power Platform Functional Consultant.
Learning objectives

In this module, you'll learn:

* How Power Bl services and applications work together
« Explore how Power Bl can make your business more efficient.

* How to create compelling visuals and reports,

Start > EGEUE]

Prerequisites
None

This modaule is part of these learning paths

eate and use analytics reports with Power B

Get started with Microsoft data analytics

Get started with Power BI

Click to start: ~ Microsoft Learn

Microsoft Learn

Introducing a new approach to learning

Free Access to High-Quality Content

Structured Learning Paths

Hands-on Labs and Interactive Exercises
Official and Up-to-Date Content

Integration with Certifications

Gamified Learning Experiences (Points, Badges)
Self-Paced Learning

Community and Q&A Integration
Comprehensive Coverage of Power Bl Features
Scenario-Based Learning Modules

20

Credit Congress Session 37063 4/14/2025

by 3 ENTERPRISEONA

Course by [ENTERBRISEDINA Click to start: D ENTERPRISE DNA

Beginner

Beginners Guide
to Power Bl

Beginner

Beginners Guide ‘% Sam Mokay, CFA

* Some Free Courses else Paid Subscription
* Expert-Led Training & Courses
* Focus on Real-World Scenarios & Problem-Solving
* Finance Focused
* Comprehensive Course Catalog
* Access to Learning Summits & Workshops
* Extensive Resource Library
* Power BI .pbix file downloads
* Customized Learning Paths
* Innovative Data Challenges & Projects
* Supportive Community Forum

| Beginners Guide to Pawer B

Total points: 358 XP < © 2 hours Total points: 407 Xp O © 3hours * Access to Power BI Showcases
* Focus on Advanced Analytics & Al Integration
FREE COURSE - Ultimate Beginners Guide To Power Bl - ¢ On-Demand, Self-Paced Learning
http://portal.enterprisedna.co/p/ultimate-beginners-guide-to-power-bi * Gamified Learning Experience (Points & Badges)
FREE COURSE - Ultimate Beginners Guide To DAX - ¢ Certification Prograrﬂs
http://portal.enterprisedna.co/p/ultimate-beginners-guide-to-dax .

Emphasis on Visualization & Design
FREE - 60 Page DAX Reference Guide Download -

https://enterprisedna.co/dax-formula-reference-guide-download

PRAG MATI C Private Training
WORKS

https://pragmaticworks.com/

On-Demand Learning

Bootcamps

Private Training

Train your team to
become their best

Pragmatic Works' private training provides a range of exclusive

Season Learning Pass

options tailored to your team'’s needs. Our expert-led sessions can be Stream Pro Plus
conducted on-site at your location or virtually, ensuring flexibility |

and convenience. This personalized approach allows us to address

your specific training requirements, fostering operational

effectiveness and skill development to help your business thrive. Certification Training

Schedule Meeting

21

Credit Congress Session 37063

Q&A and Closing

Questions?

:wer Analy3s
Expressions |

aclass 0
Expressions © D

Calcuate
Coiculde (-

1.0tpq 1 2B
1 B3 <}

e BIRG
e

Orerdyre
far Dre
Dseatye:

Bonrmyr.

tgatn

Asoiner

o
4.8

1.50
13.30
1J.86
1are
1..00
3.86

SUMX

Relat

&Refl'
.
SuMX

Relacted

S

AX /Data Analysis E
r;\?(to Analyze your custo

Cutomer

Overdute Invoices

Payment Trends

v

w| | /|

4/14/2025

Risk Scaef

H

7"‘?’00.

22

