
Credit Congress Session 37063 4/14/2025

1

Presented by: Rebekyah Brewer

Date: May 21, 2025

Session: #37063

Discovering DAX

Session 1
Power BI
Potential

Session 2
Power
Query

Proficiency

Session 3
Data

Modeling
Done Right

Session 4
Discovering

DAX

Session 5
Designing
Dynamic

Dashboards

Session 6
Platform

Publishing
Power

Learn the basics of DAX (Data Analysis
Expressions) and why it’s essential for creating
dynamic metrics and measurements in Power BI.
In this session, you'll explore how DAX enables
advanced calculations, time intelligence, and
contextual analysis, key components for building
custom KPIs and insights for credit managers.
Understanding DAX will help you create tailored
measures that adjust dynamically based on
filters, comparisons over time, and multi-table
relationships, empowering you to deliver
accurate, interactive, and insightful credit
management reports.

Key Learning Outcomes:

Credit Congress Session 37063 4/14/2025

2

START: Power
Query

Data
Modeling

DAXData
Visualizations

Deploying
to Power BI

Service

Power BI
Dashboards

Power BI Report
Building

Sequence

Prerequisites -Technical
Software Requirements

• Power BI Desktop (Free) – Power Query is built into Power BI for data
transformation.

• Excel (2016 and later, or Microsoft 365) – Power Query is available in the "Get &
Transform" section.

• Windows OS (Windows 10 or later recommended) – Power Query in Power BI is
optimized for Windows.

Optional:
• Power BI Service (Pro or Premium Per User License) – If publishing reports online,

you'll need a Power BI account

Credit Congress Session 37063 4/14/2025

3

Prerequisites - Technical
Computer Capabilities & Performance Considerations
Power Query processes data transformations, and performance can be impacted by your
system specs.

• RAM – 8GB minimum; 16GB+ recommended for handling large datasets.
• Processor – Intel i5/i7 or AMD Ryzen 5/7 or higher for better performance.
• Storage (SSD Recommended) – Faster SSD drives improve data processing speed

compared to HDD.
• Internet Speed – If working with cloud data, a stable internet connection is necessary.

Prerequisites - Experience
Before diving into DAX, a beginner needs a good grasp of:

Basic Understanding of Power BI
- Power BI Desktop: Know how to import data, create visualizations, and use different report elements.
- Power Query - While DAX is for calculations, Power Query is for data transformation. A basic

understanding of ETL (Extract, Transform, Load) in Power Query helps.
- Data Modeling Basics: Understand relationships between tables, star schema vs. snowflake schema,

and cardinality.
Relational Databases & Tables

• Familiarity with concepts like tables, columns, rows, primary keys, and foreign keys
• Knowing how different tables relate to each other (one-to-many, many-to-one, many-to-many).

Excel Functions & Formulas (Optional but VERY Helpful)
• If you are comfortable with Excel formulas, especially SUMIFS, COUNTIFS, VLOOKUP,

INDEX/MATCH, and ARRAY formulas, learning DAX will be easier.
• Understanding how Excel PivotTables work can also be helpful since DAX operates on columnar

data similar to PivotTables.

Credit Congress Session 37063 4/14/2025

4

Prerequisites - Experience
Logical Thinking & Problem Solving

• Since DAX is a functional language, writing formulas requires structured thinking.
• Debugging DAX errors requires patience and an analytical mindset.

Understanding Data Types & context
• Data Types in Power BI: Understand different data types like Text, Whole Number, Decimal,

Boolean, and Date/Time.
• Row Context vs. Filter Context: One of the most fundamental DAX concepts.
• Evaluation Context: How filters and row context change based on calculations.

Hands-On Practice in Power BI
• Practice common DAX functions like

• Aggregation: SUM, AVERAGE, COUNT, DISTINCTCOUNT
• Filter-based calculations: CALCULATE, FILTER, ALL, ALLEXCEPT
• Time intelligence: TOTALYTD, SAMEPERIODLASTYEAR, DATESYTD
• Table functions: SUMMARIZE, ADDCOLUMNS, SELECTCOLUMNS

• Practice with sample datasets or in your own daily exports
• Practice. Practice. Practice

Who is DAX For?
How Power BI Benefits ThemUser Group

Anyone building Power BI dashboards and needing custom
calculations, dynamic aggregations, and time intelligence.

Power BI Users1

Those who want to move beyond SUMIFS and VLOOKUP to more
efficient calculations in Excel.

Excel Data Analysts aka Data Wizards2

Useful for creating custom financial metrics, forecasts, and
rolling average reports in Power BI & Excel or on top of others
Power BI Reports.

Financial Analysts and Accountants3

Business users who need to write custom formulas for KPIs and
dynamic calculations.

Self-Service BI User4

Analyzing sales trends, year-over-year comparisons, and
customer segmentation, AR Portfolio, Payment Trends.

Credit Managers & Sales Teams6

Credit Congress Session 37063 4/14/2025

5

Discovering DAX
Session Overview

• Introduction & Prerequisites
• Understanding DAX
• Core Features & Functionalities
• Deep Dive into Measures
• Best Practices in DAX
• Wrap-Up, Q&A, Further Resources

Understanding DAX
(Data Analysis Expressions)

• Definition of DAX
• What is DAX?
• Purpose & Application
• Basic Concepts

• DAX Language Format
• Calculated Columns
• Syntax & Expression Eval.

Credit Congress Session 37063 4/14/2025

6

DAX - Definition

DAX (Data Analysis Expression) – DAX (Data Analysis
Expressions) is the formula language used in Power BI, Excel
Power Pivot, and Analysis Services.

It is designed for dimensional data modeling.

DAX allows users to create custom calculated columns,
measures, and tables to enhance reports and dashboards.

DAX – Does: Purpose & Application:
DAX is the key behind dynamic calculations. It enhances every data model. It
allows users to add their own analysis and calculations on top of a data model
or data source.

Functional Language – Unlike traditional procedural programming, DAX
works like Excel formulas and is optimized for columnar data storage.

Context Awareness – DAX operates within row context (working on a
single row at a time, like calculated columns) and filter context (evaluating
measures based on filters applied in a report).

Credit Congress Session 37063 4/14/2025

7

DAX – Purpose & Application:
Aggregation and Filtering – Functions like SUM(), AVERAGE(), FILTER(), and
CALCULATE() allow powerful data manipulation

Time Intelligence – DAX supports functions like TOTALYTD(),
SAMEPERIODLASTYEAR(), and DATESBETWEEN() for time-based
calculations.

Relationship Navigation – DAX can traverse table relationships, allowing
complex multi-table calculations using functions like RELATED() and
RELATEDTABLE().

DAX – Syntax

= [SalesTotal] – [TotalCost]

1. (=) Signs operator indicates beginning of formula, just like Excel.
2. First referenced column. Column references are always in brackets []
3. (-) Subtract operator.
4. Referenced column []

Calculating Margin:

Credit Congress Session 37063 4/14/2025

8

DAX – Syntax

Sum of Sales Amount = SUM(FactSales[SalesAmount])

1. Name of Measure before (=)
2. (=) Signs operator indicates beginning of formula, just like Excel.
3. Function, SUM, AVERAGE, MIN, MAX, SUM adds up all of referenced columns
4. () Parenthesis surround the argument just like they would in Excel.
5. Reference Column in brackets
6. Table name in which the column resides. If spaces are in column name, you must enclose with single quotation marks.

‘ ‘ as in ‘Fact Sales’[SalesAmount]

How to create a Measure using a function:

Measures take up no space except in the field pane where
they are stored and dragged to visuals as needed

Practice: Calculated Columns
Columnar Calculations – Are used to create new columns in a table
referred to as Calculated Columns

If you have ever added a new column to a ‘Table’ in Excel and enjoyed the
auto calculations all the way down, Calculated Columns are very similar.

Credit Congress Session 37063 4/14/2025

9

Power BI Calculated Column Example:

Sales Tax Amount = 'Sales'[Sales Amount]*'Sales'[Sales Tax Rate]

1. Name your column before the “=“ symbol
2. Identify the table with Apostrophe Symbols ‘___ ’. IntelliSense will provide you a list of available tables to

select from.
3. Identify and Select the Column you want to aggregate. Columns are identified between [___]
4. Type your operator, *, +, -, etc…
5. Identify the table and column to be operated on.

Calculated Column Examples:

Sales Tax Amount = ‘Sales’[Sales Amount]*’Sales’[Sales Tax Rate]

Salesperson Name = RELATED(Salesperson[EmployeeName])

Salesperson Name & Location =
RELATED(Salesperson[EmployeeName]) & "-" & RELATED('Salesperson'[Location])

*Notice the table identifiers ‘ apostrophes are not always required to write a Calculated Column.

Credit Risk Alert = IF(RELATED(Customers[Credit Risk Level]) = "High Risk", "Alert", " ")

Margin Size Bonus = IF([Margin %] >=.25, .02, 0)

Credit Congress Session 37063 4/14/2025

10

Best Practice: Calculated Columns

 Row-Level Calculations (e.g.,
Concatenating names, Classification)

 Sorting or Filtering needs,
Slicer

 Required for Relationships
between tables

 Data Model Constraint -
Conditional Flags for later aggregation

Aggregations – Use Measures
instead

Simple Transformations – Use
Power Query

Large Data Models – Reduces
performance efficiency

Anything that can be calculated
dynamically with measures

When to Use a Calculated Column When NOT to Use a Calculated Column

Calculated Columns vs Measures
MeasureCalculated ColumnFeature

Computed on the fly based on user interaction.
Computed row by row during data
model refreshCalculation Type

Not stored, recalculated dynamically when
needed

Stored in the model, consuming
memoryStorage

Works at the aggregation level (filter context)Works at the row level (row context)Evaluation Context

More efficient, as it's calculated only when
neededIncreases memory usage and file sizePerformance Impact

Used for aggregations (SUM, AVERAGE, COUNT,
etc.) in reports

Used when you need a new column
field in your data tableUse Case

Total Sales = SUM(Sales[Revenue]) (computed
dynamically)

Sales[Profit] = Sales[Revenue] -
Sales[Cost] (adds a new column to
the table)Example

Credit Congress Session 37063 4/14/2025

11

Basic Concepts: DAX Measures (DAX)
• Calculated at Query Time – Unlike calculated columns,

which are computed when the data is loaded or
refreshed, measures are evaluated dynamically when
used in a report.

• Aggregated Results – Measures perform calculations
across multiple rows rather than row by row.

• Context-Aware – Measures change based on the filter
and row context applied in a report (e.g., filtering by
region, date, or product category).

• Stored in the Model – Unlike Excel formulas, measures
do not exist as part of the dataset but as metadata
inside the data model.

Measures perform calculations
on data at the time of query,
responding to user interactions
such as filtering and slicing.

They are dynamic formulas
that aggregate data more
efficiently then calculated
columns.
The value changes based on
the interaction of the reports
and context of the filters.

Basic Concepts: DAX Measures (DAX)
Created measures are shown in
the Fields list beneath their
assigned table with a little
calculator icon beside them
instead of the sum icon.

You can name them whatever
you like.

They are Report Level – custom
metrics created in a report on
top of the dataset, added by
users or by data modelers.

A. Implicit Measure – auto generated,
based on fields you drag and drop.

B. Explicit Measure – are user-defined
calculations created by DAX.

C. Quick Measures – Pre-built
calculations in Power BI for common
aggregations.

D. Visual Measures – Context Specific
calculations applied directly within a
visual, not stored in a column or a
field.

Credit Congress Session 37063 4/14/2025

12

Implicit & Explicit Measures
Explicit MeasuresImplicit MeasuresFeature

User-defined calculations written using DAXAutomatically created when dragging a
numeric field into a visualDefinition:

Report Developer (Manually using DAX)Power BI (Auto-generated)Created By:

Requires DAX formulaNo DAX neededDAX Requirement:

Fully customizable with complex logicLimited (only basic aggregations)Customization:

Can be reused in multiple measures and
calculationsCannot be reused in other measuresReusability:

Can be optimized using best DAX practicesGenerally optimized for quick visual
calculationsPerformance:

Suitable for complex calculations (Year-over-
Year, Ratios, etc.)

Suitable for simple aggregations (SUM,
AVERAGE, COUNT)Complexity:

Enterprise-level reporting, consistency, and
scalabilityQuick, ad-hoc analysisBest Use Case:

Common
DAX

Functions

Aggregation: SUM(), AVERAGE(), MIN(), MAX()

Logical: IF(), SWITCH(), AND(), OR()

Filter and Context Modification: CALCULATE(), FILTER(), ALL(),
REMOVEFILTERS()

Date & Time Intelligence: DATEADD(), TOTALYTD(), EOMONTH()

Text Functions: CONCATENATE(), SEARCH(), LEFT(), RIGHT()

Table Manipulation: SUMMARIZE(), ADDCOLUMNS(), UNION(),
CROSSJOIN(), Relationship Navigation USERELATIONSHIP()

Credit Congress Session 37063 4/14/2025

13

ExampleSyntaxDescriptionFunction

SUM(Sales[Amount])SUM(<column>)Returns the sum of a column.SUM

AVERAGE(Sales[Amount])AVERAGE(<column>)Returns the average (arithmetic mean) of a column.AVERAGE

MIN(Sales[Amount])MIN(<column>)Returns the smallest value in a column.MIN

MAX(Sales[Amount])MAX(<column>)Returns the largest value in a column.MAX

COUNT(Sales[Amount])COUNT(<column>)Counts the number of numeric values in a column.COUNT

COUNTA(Sales[CustomerName])COUNTA(<column>)Counts the number of non-empty values in a column.COUNTA

COUNTROWS(Sales)COUNTROWS(<table>)Counts the number of rows in a table.COUNTROWS

DISTINCTCOUNT(Sales[CustomerID])DISTINCTCOUNT(<column>)Counts the number of distinct values in a column.DISTINCTCOUNT

SUMX(Sales, Sales[Quantity] *
Sales[Price])SUMX(<table>, <expression>)

Returns the sum of an expression evaluated for each row in a
table.SUMX

AVERAGEX(Sales, Sales[Quantity] *
Sales[Price])

AVERAGEX(<table>,
<expression>)

Returns the average of an expression evaluated for each row in
a table.AVERAGEX

MINX(Orders, Orders[OrderTotal])MINX(<table>, <expression>)
Returns the smallest value of an expression evaluated for each
row in a table.MINX

MAXX(Orders, Orders[OrderTotal])MAXX(<table>, <expression>)
Returns the largest value of an expression evaluated for each
row in a table.MAXX

DAX Fundamental Aggregation Measures

Context. Context. Context.
Understanding context is essential in DAX. There are two primary types: row context and filter
context. Let's start by examining row context.

Row Context –
Row context refers to the current row being processed.

Example: Our calculated column for Margin with the formula [SalesAmount] - [TotalCost].

This formula computes a value for each row by subtracting the TotalCost from the SalesAmount in the same
row. DAX understands which values to use because it applies the calculation within the context of each row.

In a specific row where SalesAmount is $101.08 and TotalCost is $51.54, the Margin value is calculated as
$49.54 by subtracting TotalCost from SalesAmount.

Row Context exists not just in Calculated Columns but in the SUMX, AVERAGEX, MINX and MAXX Functions.

Credit Congress Session 37063 4/14/2025

14

Context. Context. Context.
Filter Context –
Filter context is crucial in DAX because it determines which data is used in calculations.
Pivot Tables are all about filter context.

• Visuals apply a filter context automatically.

• Slicers provide a filter context.

• Explicit filter functions in DAX like CALCULATE, ALL, RELATED, FILTER allow you to include additional
filters to your measures and even override existing filter context as needed

CCTV Sales Total = CALCULATE([Sales], DimRegion[SalesType]=“CCTV”)

FILTER CONTEXT:

5. A measure [Sales] in the same table as expression. The
sales measure has the same formula:
=SUM(FactSales[SamesAmount])

1. Measure Name

6. A comma (,) separates each filter. 2. = Beginning formula

7. Referenced column with = “CCTV” as filter3. CALCULATE Function evaluates an expression, as an
argument, in a context that is modified by special filters.

Ensures that only sales values, defined by the filter are
calculated only for rows in the DimChannel with value
“CCTV”.

4. Parenthesis () surround argument(s).

Credit Congress Session 37063 4/14/2025

15

ExampleSyntaxDescriptionFunction

FILTER(Sales, Sales[Amount] > 1000)FILTER(<table>, <condition>)Returns a filtered table based on a condition.FILTER

ALL(Sales)ALL(<table_or_column>)Removes all filters from a table or column.ALL

ALLEXCEPT(Sales, Sales[Region])
ALLEXCEPT(<table>, <column1>,
<column2>, ...)Removes all filters except on specified columns.ALLEXCEPT

ALLSELECTED(Sales[Category])ALLSELECTED(<table_or_column>)
Removes filters applied by visual interactions but
retains others.ALLSELECTED

REMOVEFILTERS(Sales[Product])
REMOVEFILTERS(<table_or_column>
)

Removes all filters from the specified columns or
tables.REMOVEFILTERS

KEEPFILTERS(FILTER(Sales, Sales[Amount] >
1000))KEEPFILTERS(<expression>)

Applies existing filters before executing a
calculation.KEEPFILTERS

CALCULATE(SUM(Sales[Amount]), Sales[Region]
= "West")

CALCULATE(<expression>, <filter1>,
<filter2>, ...)Evaluates an expression in a modified filter context.CALCULATE

CALCULATETABLE(Sales, Sales[Category] =
"Electronics")

CALCULATETABLE(<table>, <filter1>,
<filter2>, ...)Returns a table with a modified filter context.CALCULATETABLE

VALUES(Sales[Product])VALUES(<column>)Returns a single-column table of unique values.VALUES

DISTINCT(Sales[CustomerID])DISTINCT(<column>)Returns a table of distinct values from a column.DISTINCT

DAX Filters for Measures – Context Override

ExampleSyntaxDescriptionFunction

IF(Sales[Amount] > 1000, "High", "Low")
IF(<condition>, <true_value>,
<false_value>)Returns one value if a condition is TRUE and another if FALSE.IF

SWITCH(Sales[Category], "A", "Type 1", "B",
"Type 2", "Other")

SWITCH(<expression>, <value1>, <result1>,
..., <else_result>)

Evaluates an expression against multiple conditions and
returns a corresponding value.SWITCH

AND(Sales[Amount] > 1000, Sales[Discount]
< 10)AND(<condition1>, <condition2>)Returns TRUE if all conditions are TRUE.AND

OR(Sales[Region] = "West", Sales[Region] =
"East")OR(<condition1>, <condition2>)Returns TRUE if at least one condition is TRUE.OR

NOT(Sales[Approved])NOT(<condition>)Returns the opposite of a Boolean expression.NOT

IFERROR(Sales[Amount] / Sales[Quantity],
0)IFERROR(<expression>, <alternate_value>)Returns a specified value if the expression results in an error.IFERROR

ISBLANK(Sales[CustomerID])ISBLANK(<value>)Checks if a value is blank (empty).ISBLANK

ISERROR(Sales[Amount] / Sales[Quantity])ISERROR(<expression>)Checks if an expression results in an error.ISERROR

TRUE()TRUE()Returns the Boolean value TRUE.TRUE

FALSE()FALSE()Returns the Boolean value FALSE.FALSE

DAX Logical Conditional Measures

Credit Congress Session 37063 4/14/2025

16

ExampleSyntaxDescriptionFunction
TOTALYTD(SUM(Sales[Amount]),
Sales[Date])

TOTALYTD(<expression>, <dates_column>[,
<filter>])Calculates year-to-date total for a measure.TOTALYTD

TOTALQTD(SUM(Sales[Amount]),
Sales[Date])

TOTALQTD(<expression>, <dates_column>[,
<filter>])

Calculates quarter-to-date total for a
measure.TOTALQTD

TOTALMTD(SUM(Sales[Amount]),
Sales[Date])

TOTALMTD(<expression>, <dates_column>[,
<filter>])

Calculates month-to-date total for a
measure.TOTALMTD

PREVIOUSYEAR(Sales[Date])PREVIOUSYEAR(<dates_column>)
Returns the measure value for the previous
year.PREVIOUSYEAR

PREVIOUSQUARTER(Sales[Date])PREVIOUSQUARTER(<dates_column>)
Returns the measure value for the previous
quarter.PREVIOUSQUARTER

PREVIOUSMONTH(Sales[Date])PREVIOUSMONTH(<dates_column>)
Returns the measure value for the previous
month.PREVIOUSMONTH

PREVIOUSDAY(Sales[Date])PREVIOUSDAY(<dates_column>)
Returns the measure value for the previous
day.PREVIOUSDAY

SAMEPERIODLASTYEAR(Sales[Date])SAMEPERIODLASTYEAR(<dates_column>)
Returns the measure value for the same
period in the previous year.SAMEPERIODLASTYEAR

DATEADD(Sales[Date], -1, YEAR)
DATEADD(<dates_column>,
<number_of_intervals>, <interval_type>)

Shifts dates forward or backward by a
given number of intervals.DATEADD

PARALLELPERIOD(Sales[Date], -1, YEAR)
PARALLELPERIOD(<dates_column>,
<number_of_intervals>, <interval_type>)

Returns a parallel period, shifting by a
given number of intervals.PARALLELPERIOD

FIRSTDATE(Sales[Date])FIRSTDATE(<dates_column>)
Returns the first date in the column or
table.FIRSTDATE

LASTDATE(Sales[Date])LASTDATE(<dates_column>)
Returns the last date in the column or
table.LASTDATE

DAX Time Intelligence Measures

Benefits of
Learning DAX in
Excel:

1. Excel is familiar territory for all of us

2. Increased opportunities for internal
use leads to wider application

3. Increased usage cases leads to
increased experience

4. Small quick wins will encourage
motivation to learn more.

5. Logical transition to Power PI
through PowerPivot

Credit Congress Session 37063 4/14/2025

17

ExampleSyntaxDescriptionFunction
ADDCOLUMNS(Sales, "Profit",
Sales[Revenue] - Sales[Cost])

ADDCOLUMNS(<table>, <column_name>,
<expression>[, <column_name>, <expression>, ...])Adds calculated columns to a table.ADDCOLUMNS

SUMMARIZE(Sales, Sales[Date],
Sales[Region], "Total Sales",
SUM(Sales[Amount]))

SUMMARIZE(<table>, <group_by_column>[,
<group_by_column>, ...][, <name>, <expression>,
...])

Returns a summary table with aggregated
values.SUMMARIZE

SUMMARIZECOLUMNS(Date[Year],
Region[RegionName], "Total Sales",
SUM(Sales[Amount]))

SUMMARIZECOLUMNS(<group_by_column>[,
<group_by_column>, ...][, <name>, <expression>,
...])

Returns a summary table with filters
applied.SUMMARIZECOLUMNS

SELECTCOLUMNS(OrderDetails, "Order ID",
OrderDetails[OrderID], "Product",
OrderDetails[Product])

SELECTCOLUMNS(<table>, <name>, <column>[,
<name>, <column>, ...])Returns a table with selected columns.SELECTCOLUMNS

FILTER(Sales, Sales[Amount] > 1000)FILTER(<table>, <condition>)
Returns a filtered table based on a
condition.FILTER

ALL(Customer)ALL(<table_or_column>)
Removes all filters from a table or
column.ALL

DISTINCT(Salesperson[SalespersonID])DISTINCT(<column>)
Returns a table of distinct values from a
column.DISTINCT

VALUES(Region[RegionName])VALUES(<column>)
Returns a single-column table of unique
values.VALUES

CROSSJOIN(Salesperson, Region)CROSSJOIN(<table1>, <table2>)
Returns a Cartesian product of two
tables.CROSSJOIN

UNION(OrderDetails_2023,
OrderDetails_2024)UNION(<table1>, <table2>[, <table3>, ...])

Returns the union of two tables,
removing duplicates.UNION

INTERSECT(Customer_US,
Customer_Canada)INTERSECT(<table1>, <table2>)Returns the intersection of two tables.INTERSECT

EXCEPT(Sales, Sales_Excluded)EXCEPT(<table1>, <table2>)
Returns the difference between two
tables (values in first but not in second).EXCEPT

DAX Fundamental Table Functions

Date Table – DAX Method
DateTable =
ADDCOLUMNS (

CALENDAR (DATE(2015,1,1), DATE(2030,12,31)),
"Year", YEAR([Date]),
"Month", FORMAT([Date], "MMMM"),
"Month Number", MONTH([Date]),
"Quarter", "Q" & FORMAT([Date], "Q"),
"Day of Week", FORMAT([Date], "dddd"),
"Day of Year", FORMAT([Date], "DDD"),
"Week Number", WEEKNUM([Date])

)

Credit Congress Session 37063 4/14/2025

18

DAX FormulaDescriptionMeasure Name

Total AR = SUM(Invoices[Outstanding Balance])Total outstanding Accounts Receivable (A/R) balance.Total AR
Current AR = CALCULATE([Total AR], Invoices[Due Date] >= TODAY())Balance of invoices that are not overdue.Current AR
Past Due AR = CALCULATE([Total AR], Invoices[Due Date] < TODAY())Total amount of past-due invoices.Overdue AR
AR 0-30 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date], TODAY(),
DAY) <= 30)Total A/R balance for invoices due within 0-30 days.AR 0-30 Days
AR 31-60 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date], TODAY(),
DAY) > 30, DATEDIFF(Invoices[Due Date], TODAY(), DAY) <= 60)Total A/R balance for invoices due within 31-60 days.AR 31-60 Days
AR 61-90 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date], TODAY(),
DAY) > 60, DATEDIFF(Invoices[Due Date], TODAY(), DAY) <= 90)Total A/R balance for invoices due within 61-90 days.AR 61-90 Days
AR Over 90 Days = CALCULATE([Total AR], DATEDIFF(Invoices[Due Date],
TODAY(), DAY) > 90)Total A/R balance for invoices due over 90 days.AR Over 90 Days
SWITCH(TRUE(), AR[DaysPastDue] <= 30, '0-30 Days', AR[DaysPastDue] <= 60,
'31-60 Days', AR[DaysPastDue] <= 90, '61-90 Days', '90+ Days')

Categorization of AR into aging buckets (e.g., 0-30, 31-60,
61-90, 90+ days).

AR Aging Category
Overdue AR % = DIVIDE([Past Due AR], [Total AR], 0)Percentage of total A/R that is overdue.Overdue AR %

DSO = DIVIDE([Total AR] * 365, [Total Sales])
Days Sales Outstanding - average number of days to collect
payment.DSO

TOPN(10, AR, AR[OutstandingAmount])
Table List of top 10 customers with the highest outstanding
AR.

Top 10 Customers by
AR

Credit Utilization = DIVIDE(SUM(Invoices[Outstanding Balance]),
SUM(Customers[Credit Limit]), 0)

Credit utilization ratio - how much of total credit limit is
used.Credit Utilization

Top 5 Customers = RANKX(ALL(Customers), [Total AR], , DESC)Ranks customers by outstanding A/R balance.Top 5 Customers
Expected Cash Inflow = SUMX(Invoices, Invoices[Outstanding Balance] * (1 -
Invoices[Estimated Default Rate]))

Estimated cash inflow from outstanding invoices, adjusting
for default risk.Expected Cash Inflow

AR Portfolio Analysis Calculations

DescriptionDAX FormulaMeasure Name
Total revenue from salesSUM('FactSales'[Order Amount])Total Sales
Revenue from equipment salesSUM('FactSales'[Equipment Portion])Total Equipment Sales
Revenue from labor servicesSUM('FactSales'[Labor Portion])Total Labor Sales
Total sales tax collectedSUMX('FactSales', 'FactSales'[Order Amount] * 'FactSales'[Sales Tax Rate])Total Sales Tax
Percentage of total sales from equipmentDIVIDE([Equipment Sales], [Total Sales], 0)Equipment Contribution %
Percentage of total sales from laborDIVIDE([Labor Sales], [Total Sales], 0)Labor Contribution %
Total cost of salesSUM('FactSales'[Cost Portion])Total Cost
Total sales revenue minus total cost[Total Sales] - [Total Cost]Gross Profit
Percentage of sales revenue that is profitDIVIDE([Gross Profit], [Total Sales], 0)Gross Profit Margin %

Year-over-Year sales growth percentage

VAR LastYearSales = CALCULATE([Total Sales], SAMEPERIODLASTYEAR('FactSales'[Sales
Date]))
RETURN DIVIDE([Total Sales] - LastYearSales, LastYearSales, 0)Sales YoY Growth %

Month-over-Month sales growth percentage

VAR LastMonthSales = CALCULATE([Total Sales], PREVIOUSMONTH('FactSales'[Sales
Date]))
RETURN DIVIDE([Total Sales] - LastMonthSales, LastMonthSales, 0)Sales MoM Growth %

Total sales categorized by regionSUMX('FactSales', 'FactSales'[Order Amount])Sales by Region
Total sales per salespersonSUMX('FactSales', 'FactSales'[Order Amount])Sales by Salesperson
Average value of customer ordersDIVIDE([Total Sales], DISTINCTCOUNT('FactSales'[Customer Name]), 0)Average Order Value (AOV)
Percentage contribution of each customer to total
salesDIVIDE([Total Sales], CALCULATE([Total Sales], ALL('FactSales'[Customer Name])), 0)

Customer Sales %
Contribution

Flags customers with high sales as potentially high
riskIF([Total Sales] > 100000, 'High Risk', 'Normal')High Risk Customers
Average number of days to collect paymentDIVIDE([Total Receivables], [Total Sales]) * 30Days Sales Outstanding (DSO)

Percentage of sales with late payments
DIVIDE(SUMX('FactSales', IF('FactSales'[Days Past Due] > 30, 'FactSales'[Order Amount],
0)), [Total Sales], 0)Late Payment %

Percentage of total sales written off as bad debtDIVIDE(SUM('FactSales'[Write-offs]), [Total Sales], 0)Bad Debt %
Ranks customers based on sales volumeRANKX(ALL('FactSales'[Customer Name]), [Total Sales], , DESC, DENSE)Top 10 Customers by Sales
Total sales categorized by trade categorySUMX('FactSales', 'FactSales'[Order Amount])Sales by Trade Category

Sales Analysis Calculations

Credit Congress Session 37063 4/14/2025

19

Example:Why It's Important:Best Practice:

TotalSales = SUM(Sales[Amount])Saves memory and improves performance1. Use Measures Instead of Calculated
Columns

VAR Revenue = SUM(Sales[Revenue]) RETURN RevenueAvoids redundant calculations, improves
readability2. Use Variables (VAR)

CALCULATE(SUM(Sales[Amount])) converts row to filter
context

Ensures expected behavior when switching
contexts3. Understand Context Transition

CALCULATE(SUM(Sales[Amount]),
SAMEPERIODLASTYEAR(Date[Date]))Prevents unexpected filtering issues4. Keep Filters Explicit in CALCULATE()

CALCULATE(SUM(Sales[Amount]), Sales[Amount] > 100)Improves performance by reducing
iterations

5. Avoid FILTER() for Simple
Conditions

CALCULATE(SUM(Sales[Amount]), Customer[Category] =
"Premium")7Limits computational overhead6. Reduce Dependencies on Entire

Tables

DIVIDE(SUM(Sales[Profit]), SUM(Sales[Revenue]), 0)Prevents division by zero errors7. Use DIVIDE() Instead of /

Create Measure Tables & Folders8. Organize Your Measures

CALCULATE(SUM(Sales[Amount]), ALL(Sales)) (use with
caution)Prevents unexpected filter removal9. Avoid Overuse of ALL()

TotalSalesAmount, CustomerCountImproves maintainability and collaboration10. Use Clear Naming Conventions

Top 10 Best Practices for DAX

Next Steps for Learning

 K.I.S.S. – Keep it Simple Stupid.
 Start with small datasets (Excel or
CSV) before working with large
databases.
with different online data sources

 Follow guided tutorials (Microsoft
Learn, YouTube, blog posts).

 Work on real-world projects to
reinforce concepts, even if its just for you.

Credit Congress Session 37063 4/14/2025

20

Microsoft Dashboard in a Day
Attend a Free 1 Day Event Workshop: Hands-On, Practical Learning Experience

Rapid Skill Acquisition

Guided Instruction from Experts

Structured Learning Agenda

Real-World Application of Skills

Access to Workshop Materials & Resources

Networking Opportunities

Personalized Feedback & Support

Boosts Confidence with Power BI

Preparation for Advanced Learning

Cost-Effective Training Option

Immediate Insight into Power BI’s Capabilities

Exposure to Power BI Service Features
Pragmatic Works DAX Cheat Sheet for Beginners

Microsoft Learn

• Free Access to High-Quality Content
• Structured Learning Paths
• Hands-on Labs and Interactive Exercises
• Official and Up-to-Date Content
• Integration with Certifications
• Gamified Learning Experiences (Points, Badges)
• Self-Paced Learning
• Community and Q&A Integration
• Comprehensive Coverage of Power BI Features
• Scenario-Based Learning Modules

Click to start:

Credit Congress Session 37063 4/14/2025

21

Click to start:

• Some Free Courses else Paid Subscription
• Expert-Led Training & Courses
• Focus on Real-World Scenarios & Problem-Solving

• Finance Focused
• Comprehensive Course Catalog
• Access to Learning Summits & Workshops
• Extensive Resource Library

• Power BI .pbix file downloads
• Customized Learning Paths
• Innovative Data Challenges & Projects
• Supportive Community Forum
• Access to Power BI Showcases
• Focus on Advanced Analytics & AI Integration
• On-Demand, Self-Paced Learning
• Gamified Learning Experience (Points & Badges)
• Certification Programs
• Emphasis on Visualization & Design

FREE COURSE - Ultimate Beginners Guide To Power BI -
http://portal.enterprisedna.co/p/ultimate-beginners-guide-to-power-bi
FREE COURSE - Ultimate Beginners Guide To DAX -
http://portal.enterprisedna.co/p/ultimate-beginners-guide-to-dax
FREE - 60 Page DAX Reference Guide Download -
https://enterprisedna.co/dax-formula-reference-guide-download

Sam McKay, CFA

https://pragmaticworks.com/

Credit Congress Session 37063 4/14/2025

22

Q&A and Closing

Questions?

